This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reverse of a word is a word. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revcl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) ∈ Word 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revval | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) | |
| 2 | wrdf | ⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 4 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 5 | lencl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 7 | 6 | nn0zd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 8 | fzoval | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 10 | 4 9 | eleqtrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 11 | fznn0sub2 | ⊢ ( 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 13 | 12 9 | eleqtrrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 14 | 3 13 | ffvelcdmd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ∈ 𝐴 ) |
| 15 | 14 | fmpttd | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 16 | iswrdi | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ∈ Word 𝐴 ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ∈ Word 𝐴 ) |
| 18 | 1 17 | eqeltrd | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) ∈ Word 𝐴 ) |