This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015) (Proof shortened by AV, 30-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatval3 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 2 | 1 | nn0zd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
| 3 | 2 | anim1ci | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) ) |
| 5 | fzo0addelr | ⊢ ( ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) → ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 7 | ccatval2 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ ( ( 𝐼 + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑆 ) ) ) ) | |
| 8 | 6 7 | syld3an3 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ ( ( 𝐼 + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑆 ) ) ) ) |
| 9 | elfzoelz | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝐼 ∈ ℤ ) | |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝐼 ∈ ℤ ) |
| 11 | 10 | zcnd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝐼 ∈ ℂ ) |
| 12 | 1 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 13 | 12 | nn0cnd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 14 | 11 13 | pncand | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝐼 + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑆 ) ) = 𝐼 ) |
| 15 | 14 | fveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑇 ‘ ( ( 𝐼 + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝐼 ) ) |
| 16 | 8 15 | eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝐼 ) ) |