This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zaddcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz2 | ⊢ ( 𝑀 ∈ ℤ ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ) | |
| 2 | elz2 | ⊢ ( 𝑁 ∈ ℤ ↔ ∃ 𝑧 ∈ ℕ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) | |
| 3 | reeanv | ⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑧 ∈ ℕ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) ) | |
| 4 | reeanv | ⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) ) | |
| 5 | nnaddcl | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑥 + 𝑧 ) ∈ ℕ ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑥 + 𝑧 ) ∈ ℕ ) |
| 7 | nnaddcl | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( 𝑦 + 𝑤 ) ∈ ℕ ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑦 + 𝑤 ) ∈ ℕ ) |
| 9 | nncn | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) | |
| 10 | nncn | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) | |
| 11 | 9 10 | anim12i | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
| 12 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 13 | nncn | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℂ ) | |
| 14 | 12 13 | anim12i | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( 𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) |
| 15 | addsub4 | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( ( 𝑥 + 𝑧 ) − ( 𝑦 + 𝑤 ) ) = ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ) | |
| 16 | 11 14 15 | syl2an | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 + 𝑧 ) − ( 𝑦 + 𝑤 ) ) = ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ) |
| 17 | 16 | eqcomd | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( ( 𝑥 + 𝑧 ) − ( 𝑦 + 𝑤 ) ) ) |
| 18 | rspceov | ⊢ ( ( ( 𝑥 + 𝑧 ) ∈ ℕ ∧ ( 𝑦 + 𝑤 ) ∈ ℕ ∧ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( ( 𝑥 + 𝑧 ) − ( 𝑦 + 𝑤 ) ) ) → ∃ 𝑢 ∈ ℕ ∃ 𝑣 ∈ ℕ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( 𝑢 − 𝑣 ) ) | |
| 19 | 6 8 17 18 | syl3anc | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ∃ 𝑢 ∈ ℕ ∃ 𝑣 ∈ ℕ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( 𝑢 − 𝑣 ) ) |
| 20 | elz2 | ⊢ ( ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ∈ ℤ ↔ ∃ 𝑢 ∈ ℕ ∃ 𝑣 ∈ ℕ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( 𝑢 − 𝑣 ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ∈ ℤ ) |
| 22 | oveq12 | ⊢ ( ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) = ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ) | |
| 23 | 22 | eleq1d | ⊢ ( ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( ( 𝑀 + 𝑁 ) ∈ ℤ ↔ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ∈ ℤ ) ) |
| 24 | 21 23 | syl5ibrcom | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) ) |
| 25 | 24 | rexlimdvva | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) ) |
| 26 | 4 25 | biimtrrid | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) ) |
| 27 | 26 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 28 | 3 27 | sylbir | ⊢ ( ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑧 ∈ ℕ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 29 | 1 2 28 | syl2anb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |