This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosubel3 | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ( 0 ..^ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ) | |
| 2 | elfzoel1 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) → 𝐵 ∈ ℤ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
| 4 | 3 | zcnd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 5 | 4 | addridd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + 0 ) = 𝐵 ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐵 + 0 ) ..^ ( 𝐵 + 𝐷 ) ) = ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ) |
| 7 | 1 6 | eleqtrrd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ( ( 𝐵 + 0 ) ..^ ( 𝐵 + 𝐷 ) ) ) |
| 8 | 0zd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 0 ∈ ℤ ) | |
| 9 | simpr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℤ ) | |
| 10 | fzosubel2 | ⊢ ( ( 𝐴 ∈ ( ( 𝐵 + 0 ) ..^ ( 𝐵 + 𝐷 ) ) ∧ ( 𝐵 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐷 ∈ ℤ ) ) → ( 𝐴 − 𝐵 ) ∈ ( 0 ..^ 𝐷 ) ) | |
| 11 | 7 3 8 9 10 | syl13anc | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ( 0 ..^ 𝐷 ) ) |