This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fznn0sub2 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝐾 ) ∈ ( 0 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝐾 ) | |
| 2 | elfzel2 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 3 | elfzelz | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 4 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 5 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 6 | subge02 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ≤ 𝐾 ↔ ( 𝑁 − 𝐾 ) ≤ 𝑁 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 0 ≤ 𝐾 ↔ ( 𝑁 − 𝐾 ) ≤ 𝑁 ) ) |
| 8 | 2 3 7 | syl2anc | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 0 ≤ 𝐾 ↔ ( 𝑁 − 𝐾 ) ≤ 𝑁 ) ) |
| 9 | 1 8 | mpbid | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝐾 ) ≤ 𝑁 ) |
| 10 | fznn0sub | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝐾 ) ∈ ℕ0 ) | |
| 11 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 12 | 10 11 | eleqtrdi | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝐾 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 13 | elfz5 | ⊢ ( ( ( 𝑁 − 𝐾 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 − 𝐾 ) ∈ ( 0 ... 𝑁 ) ↔ ( 𝑁 − 𝐾 ) ≤ 𝑁 ) ) | |
| 14 | 12 2 13 | syl2anc | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( ( 𝑁 − 𝐾 ) ∈ ( 0 ... 𝑁 ) ↔ ( 𝑁 − 𝐾 ) ≤ 𝑁 ) ) |
| 15 | 9 14 | mpbird | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝐾 ) ∈ ( 0 ... 𝑁 ) ) |