This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatval2 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝐼 ) = ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatfval | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑆 ++ 𝑇 ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ) |
| 3 | eleq1 | ⊢ ( 𝑥 = 𝐼 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ↔ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝐼 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝐼 ) ) | |
| 5 | fvoveq1 | ⊢ ( 𝑥 = 𝐼 → ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) | |
| 6 | 3 4 5 | ifbieq12d | ⊢ ( 𝑥 = 𝐼 → if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) = if ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝐼 ) , ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) ) |
| 7 | fzodisj | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∩ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) = ∅ | |
| 8 | minel | ⊢ ( ( 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∩ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) = ∅ ) → ¬ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) | |
| 9 | 7 8 | mpan2 | ⊢ ( 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → ¬ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ¬ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 11 | 10 | iffalsed | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → if ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝐼 ) , ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) = ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) |
| 12 | 6 11 | sylan9eqr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ∧ 𝑥 = 𝐼 ) → if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) = ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) |
| 13 | wrdfin | ⊢ ( 𝑆 ∈ Word 𝐵 → 𝑆 ∈ Fin ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑆 ∈ Fin ) |
| 15 | hashcl | ⊢ ( 𝑆 ∈ Fin → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 16 | fzoss1 | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) → ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) | |
| 17 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 18 | 16 17 | eleq2s | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 19 | 14 15 18 | 3syl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 20 | 19 | sseld | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) |
| 21 | 20 | 3impia | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 22 | fvexd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ∈ V ) | |
| 23 | 2 12 21 22 | fvmptd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝐼 ) = ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) |