This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzaddcl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℂ ) | |
| 2 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | addass | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 𝑘 ) + 1 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) | |
| 5 | 3 4 | mp3an3 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑁 + 𝑘 ) + 1 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) |
| 6 | 1 2 5 | syl2anr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑁 + 𝑘 ) + 1 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑁 + 𝑘 ) + 1 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) |
| 8 | peano2uz | ⊢ ( ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑁 + 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | 7 9 | eqeltrrd | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 11 | 10 | exp31 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 12 | 11 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 13 | 1 | addridd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 0 ) = 𝑁 ) |
| 14 | 13 | eleq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 0 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 15 | 14 | ibir | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 0 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 16 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝑁 + 𝑗 ) = ( 𝑁 + 0 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑗 = 0 → ( ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑁 + 0 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑗 = 0 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 0 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑁 + 𝑗 ) = ( 𝑁 + 𝑘 ) ) | |
| 20 | 19 | eleq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑁 + 𝑗 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) | |
| 23 | 22 | eleq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 25 | oveq2 | ⊢ ( 𝑗 = 𝐾 → ( 𝑁 + 𝑗 ) = ( 𝑁 + 𝐾 ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑗 = 𝐾 → ( ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑗 = 𝐾 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 28 | 12 15 18 21 24 27 | nn0indALT | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 29 | 28 | impcom | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |