This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Antiautomorphic property of the reversal operation. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revccat | |- ( ( S e. Word A /\ T e. Word A ) -> ( reverse ` ( S ++ T ) ) = ( ( reverse ` T ) ++ ( reverse ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatcl | |- ( ( S e. Word A /\ T e. Word A ) -> ( S ++ T ) e. Word A ) |
|
| 2 | revcl | |- ( ( S ++ T ) e. Word A -> ( reverse ` ( S ++ T ) ) e. Word A ) |
|
| 3 | wrdfn | |- ( ( reverse ` ( S ++ T ) ) e. Word A -> ( reverse ` ( S ++ T ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( S ++ T ) ) ) ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( ( S e. Word A /\ T e. Word A ) -> ( reverse ` ( S ++ T ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( S ++ T ) ) ) ) ) |
| 5 | revlen | |- ( ( S ++ T ) e. Word A -> ( # ` ( reverse ` ( S ++ T ) ) ) = ( # ` ( S ++ T ) ) ) |
|
| 6 | 1 5 | syl | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` ( reverse ` ( S ++ T ) ) ) = ( # ` ( S ++ T ) ) ) |
| 7 | ccatlen | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` ( S ++ T ) ) = ( ( # ` S ) + ( # ` T ) ) ) |
|
| 8 | lencl | |- ( S e. Word A -> ( # ` S ) e. NN0 ) |
|
| 9 | 8 | nn0cnd | |- ( S e. Word A -> ( # ` S ) e. CC ) |
| 10 | lencl | |- ( T e. Word A -> ( # ` T ) e. NN0 ) |
|
| 11 | 10 | nn0cnd | |- ( T e. Word A -> ( # ` T ) e. CC ) |
| 12 | addcom | |- ( ( ( # ` S ) e. CC /\ ( # ` T ) e. CC ) -> ( ( # ` S ) + ( # ` T ) ) = ( ( # ` T ) + ( # ` S ) ) ) |
|
| 13 | 9 11 12 | syl2an | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` S ) + ( # ` T ) ) = ( ( # ` T ) + ( # ` S ) ) ) |
| 14 | 6 7 13 | 3eqtrd | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` ( reverse ` ( S ++ T ) ) ) = ( ( # ` T ) + ( # ` S ) ) ) |
| 15 | 14 | oveq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( 0 ..^ ( # ` ( reverse ` ( S ++ T ) ) ) ) = ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
| 16 | 15 | fneq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( reverse ` ( S ++ T ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( S ++ T ) ) ) ) <-> ( reverse ` ( S ++ T ) ) Fn ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) ) |
| 17 | 4 16 | mpbid | |- ( ( S e. Word A /\ T e. Word A ) -> ( reverse ` ( S ++ T ) ) Fn ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
| 18 | revcl | |- ( T e. Word A -> ( reverse ` T ) e. Word A ) |
|
| 19 | revcl | |- ( S e. Word A -> ( reverse ` S ) e. Word A ) |
|
| 20 | ccatcl | |- ( ( ( reverse ` T ) e. Word A /\ ( reverse ` S ) e. Word A ) -> ( ( reverse ` T ) ++ ( reverse ` S ) ) e. Word A ) |
|
| 21 | 18 19 20 | syl2anr | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( reverse ` T ) ++ ( reverse ` S ) ) e. Word A ) |
| 22 | wrdfn | |- ( ( ( reverse ` T ) ++ ( reverse ` S ) ) e. Word A -> ( ( reverse ` T ) ++ ( reverse ` S ) ) Fn ( 0 ..^ ( # ` ( ( reverse ` T ) ++ ( reverse ` S ) ) ) ) ) |
|
| 23 | 21 22 | syl | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( reverse ` T ) ++ ( reverse ` S ) ) Fn ( 0 ..^ ( # ` ( ( reverse ` T ) ++ ( reverse ` S ) ) ) ) ) |
| 24 | ccatlen | |- ( ( ( reverse ` T ) e. Word A /\ ( reverse ` S ) e. Word A ) -> ( # ` ( ( reverse ` T ) ++ ( reverse ` S ) ) ) = ( ( # ` ( reverse ` T ) ) + ( # ` ( reverse ` S ) ) ) ) |
|
| 25 | 18 19 24 | syl2anr | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` ( ( reverse ` T ) ++ ( reverse ` S ) ) ) = ( ( # ` ( reverse ` T ) ) + ( # ` ( reverse ` S ) ) ) ) |
| 26 | revlen | |- ( T e. Word A -> ( # ` ( reverse ` T ) ) = ( # ` T ) ) |
|
| 27 | revlen | |- ( S e. Word A -> ( # ` ( reverse ` S ) ) = ( # ` S ) ) |
|
| 28 | 26 27 | oveqan12rd | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` ( reverse ` T ) ) + ( # ` ( reverse ` S ) ) ) = ( ( # ` T ) + ( # ` S ) ) ) |
| 29 | 25 28 | eqtrd | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` ( ( reverse ` T ) ++ ( reverse ` S ) ) ) = ( ( # ` T ) + ( # ` S ) ) ) |
| 30 | 29 | oveq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( 0 ..^ ( # ` ( ( reverse ` T ) ++ ( reverse ` S ) ) ) ) = ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
| 31 | 30 | fneq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( reverse ` T ) ++ ( reverse ` S ) ) Fn ( 0 ..^ ( # ` ( ( reverse ` T ) ++ ( reverse ` S ) ) ) ) <-> ( ( reverse ` T ) ++ ( reverse ` S ) ) Fn ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) ) |
| 32 | 23 31 | mpbid | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( reverse ` T ) ++ ( reverse ` S ) ) Fn ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
| 33 | id | |- ( x e. ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) -> x e. ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
|
| 34 | 10 | nn0zd | |- ( T e. Word A -> ( # ` T ) e. ZZ ) |
| 35 | 34 | adantl | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` T ) e. ZZ ) |
| 36 | fzospliti | |- ( ( x e. ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) /\ ( # ` T ) e. ZZ ) -> ( x e. ( 0 ..^ ( # ` T ) ) \/ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) ) |
|
| 37 | 33 35 36 | syl2anr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( x e. ( 0 ..^ ( # ` T ) ) \/ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) ) |
| 38 | simpll | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> S e. Word A ) |
|
| 39 | simplr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> T e. Word A ) |
|
| 40 | fzoval | |- ( ( # ` T ) e. ZZ -> ( 0 ..^ ( # ` T ) ) = ( 0 ... ( ( # ` T ) - 1 ) ) ) |
|
| 41 | 34 40 | syl | |- ( T e. Word A -> ( 0 ..^ ( # ` T ) ) = ( 0 ... ( ( # ` T ) - 1 ) ) ) |
| 42 | 41 | adantl | |- ( ( S e. Word A /\ T e. Word A ) -> ( 0 ..^ ( # ` T ) ) = ( 0 ... ( ( # ` T ) - 1 ) ) ) |
| 43 | 42 | eleq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( x e. ( 0 ..^ ( # ` T ) ) <-> x e. ( 0 ... ( ( # ` T ) - 1 ) ) ) ) |
| 44 | 43 | biimpa | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> x e. ( 0 ... ( ( # ` T ) - 1 ) ) ) |
| 45 | fznn0sub2 | |- ( x e. ( 0 ... ( ( # ` T ) - 1 ) ) -> ( ( ( # ` T ) - 1 ) - x ) e. ( 0 ... ( ( # ` T ) - 1 ) ) ) |
|
| 46 | 44 45 | syl | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( ( # ` T ) - 1 ) - x ) e. ( 0 ... ( ( # ` T ) - 1 ) ) ) |
| 47 | 41 | ad2antlr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( 0 ..^ ( # ` T ) ) = ( 0 ... ( ( # ` T ) - 1 ) ) ) |
| 48 | 46 47 | eleqtrrd | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( ( # ` T ) - 1 ) - x ) e. ( 0 ..^ ( # ` T ) ) ) |
| 49 | ccatval3 | |- ( ( S e. Word A /\ T e. Word A /\ ( ( ( # ` T ) - 1 ) - x ) e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( ( ( ( # ` T ) - 1 ) - x ) + ( # ` S ) ) ) = ( T ` ( ( ( # ` T ) - 1 ) - x ) ) ) |
|
| 50 | 38 39 48 49 | syl3anc | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( ( ( ( # ` T ) - 1 ) - x ) + ( # ` S ) ) ) = ( T ` ( ( ( # ` T ) - 1 ) - x ) ) ) |
| 51 | 7 13 | eqtrd | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` ( S ++ T ) ) = ( ( # ` T ) + ( # ` S ) ) ) |
| 52 | 51 | oveq1d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` ( S ++ T ) ) - 1 ) = ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) |
| 53 | 11 | adantl | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` T ) e. CC ) |
| 54 | 9 | adantr | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` S ) e. CC ) |
| 55 | 1cnd | |- ( ( S e. Word A /\ T e. Word A ) -> 1 e. CC ) |
|
| 56 | 53 54 55 | addsubd | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( # ` T ) + ( # ` S ) ) - 1 ) = ( ( ( # ` T ) - 1 ) + ( # ` S ) ) ) |
| 57 | 52 56 | eqtrd | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` ( S ++ T ) ) - 1 ) = ( ( ( # ` T ) - 1 ) + ( # ` S ) ) ) |
| 58 | 57 | oveq1d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) = ( ( ( ( # ` T ) - 1 ) + ( # ` S ) ) - x ) ) |
| 59 | 58 | adantr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) = ( ( ( ( # ` T ) - 1 ) + ( # ` S ) ) - x ) ) |
| 60 | peano2zm | |- ( ( # ` T ) e. ZZ -> ( ( # ` T ) - 1 ) e. ZZ ) |
|
| 61 | 34 60 | syl | |- ( T e. Word A -> ( ( # ` T ) - 1 ) e. ZZ ) |
| 62 | 61 | zcnd | |- ( T e. Word A -> ( ( # ` T ) - 1 ) e. CC ) |
| 63 | 62 | ad2antlr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( # ` T ) - 1 ) e. CC ) |
| 64 | 9 | ad2antrr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( # ` S ) e. CC ) |
| 65 | elfzoelz | |- ( x e. ( 0 ..^ ( # ` T ) ) -> x e. ZZ ) |
|
| 66 | 65 | zcnd | |- ( x e. ( 0 ..^ ( # ` T ) ) -> x e. CC ) |
| 67 | 66 | adantl | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> x e. CC ) |
| 68 | 63 64 67 | addsubd | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( ( ( # ` T ) - 1 ) + ( # ` S ) ) - x ) = ( ( ( ( # ` T ) - 1 ) - x ) + ( # ` S ) ) ) |
| 69 | 59 68 | eqtrd | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) = ( ( ( ( # ` T ) - 1 ) - x ) + ( # ` S ) ) ) |
| 70 | 69 | fveq2d | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) = ( ( S ++ T ) ` ( ( ( ( # ` T ) - 1 ) - x ) + ( # ` S ) ) ) ) |
| 71 | revfv | |- ( ( T e. Word A /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( reverse ` T ) ` x ) = ( T ` ( ( ( # ` T ) - 1 ) - x ) ) ) |
|
| 72 | 71 | adantll | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( reverse ` T ) ` x ) = ( T ` ( ( ( # ` T ) - 1 ) - x ) ) ) |
| 73 | 50 70 72 | 3eqtr4d | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) = ( ( reverse ` T ) ` x ) ) |
| 74 | 34 | uzidd | |- ( T e. Word A -> ( # ` T ) e. ( ZZ>= ` ( # ` T ) ) ) |
| 75 | uzaddcl | |- ( ( ( # ` T ) e. ( ZZ>= ` ( # ` T ) ) /\ ( # ` S ) e. NN0 ) -> ( ( # ` T ) + ( # ` S ) ) e. ( ZZ>= ` ( # ` T ) ) ) |
|
| 76 | 74 8 75 | syl2anr | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` T ) + ( # ` S ) ) e. ( ZZ>= ` ( # ` T ) ) ) |
| 77 | 51 76 | eqeltrd | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` ( S ++ T ) ) e. ( ZZ>= ` ( # ` T ) ) ) |
| 78 | fzoss2 | |- ( ( # ` ( S ++ T ) ) e. ( ZZ>= ` ( # ` T ) ) -> ( 0 ..^ ( # ` T ) ) C_ ( 0 ..^ ( # ` ( S ++ T ) ) ) ) |
|
| 79 | 77 78 | syl | |- ( ( S e. Word A /\ T e. Word A ) -> ( 0 ..^ ( # ` T ) ) C_ ( 0 ..^ ( # ` ( S ++ T ) ) ) ) |
| 80 | 79 | sselda | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> x e. ( 0 ..^ ( # ` ( S ++ T ) ) ) ) |
| 81 | revfv | |- ( ( ( S ++ T ) e. Word A /\ x e. ( 0 ..^ ( # ` ( S ++ T ) ) ) ) -> ( ( reverse ` ( S ++ T ) ) ` x ) = ( ( S ++ T ) ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) ) |
|
| 82 | 1 80 81 | syl2an2r | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( reverse ` ( S ++ T ) ) ` x ) = ( ( S ++ T ) ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) ) |
| 83 | 18 | ad2antlr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( reverse ` T ) e. Word A ) |
| 84 | 19 | ad2antrr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( reverse ` S ) e. Word A ) |
| 85 | 26 | adantl | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` ( reverse ` T ) ) = ( # ` T ) ) |
| 86 | 85 | oveq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( 0 ..^ ( # ` ( reverse ` T ) ) ) = ( 0 ..^ ( # ` T ) ) ) |
| 87 | 86 | eleq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( x e. ( 0 ..^ ( # ` ( reverse ` T ) ) ) <-> x e. ( 0 ..^ ( # ` T ) ) ) ) |
| 88 | 87 | biimpar | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> x e. ( 0 ..^ ( # ` ( reverse ` T ) ) ) ) |
| 89 | ccatval1 | |- ( ( ( reverse ` T ) e. Word A /\ ( reverse ` S ) e. Word A /\ x e. ( 0 ..^ ( # ` ( reverse ` T ) ) ) ) -> ( ( ( reverse ` T ) ++ ( reverse ` S ) ) ` x ) = ( ( reverse ` T ) ` x ) ) |
|
| 90 | 83 84 88 89 | syl3anc | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( ( reverse ` T ) ++ ( reverse ` S ) ) ` x ) = ( ( reverse ` T ) ` x ) ) |
| 91 | 73 82 90 | 3eqtr4d | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( reverse ` ( S ++ T ) ) ` x ) = ( ( ( reverse ` T ) ++ ( reverse ` S ) ) ` x ) ) |
| 92 | 8 | nn0zd | |- ( S e. Word A -> ( # ` S ) e. ZZ ) |
| 93 | peano2zm | |- ( ( # ` S ) e. ZZ -> ( ( # ` S ) - 1 ) e. ZZ ) |
|
| 94 | 92 93 | syl | |- ( S e. Word A -> ( ( # ` S ) - 1 ) e. ZZ ) |
| 95 | 94 | zcnd | |- ( S e. Word A -> ( ( # ` S ) - 1 ) e. CC ) |
| 96 | 95 | ad2antrr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( # ` S ) - 1 ) e. CC ) |
| 97 | elfzoelz | |- ( x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) -> x e. ZZ ) |
|
| 98 | 97 | zcnd | |- ( x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) -> x e. CC ) |
| 99 | 98 | adantl | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> x e. CC ) |
| 100 | 11 | ad2antlr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( # ` T ) e. CC ) |
| 101 | 96 99 100 | subsub3d | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( ( # ` S ) - 1 ) - ( x - ( # ` T ) ) ) = ( ( ( ( # ` S ) - 1 ) + ( # ` T ) ) - x ) ) |
| 102 | 26 | oveq2d | |- ( T e. Word A -> ( x - ( # ` ( reverse ` T ) ) ) = ( x - ( # ` T ) ) ) |
| 103 | 102 | oveq2d | |- ( T e. Word A -> ( ( ( # ` S ) - 1 ) - ( x - ( # ` ( reverse ` T ) ) ) ) = ( ( ( # ` S ) - 1 ) - ( x - ( # ` T ) ) ) ) |
| 104 | 103 | ad2antlr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( ( # ` S ) - 1 ) - ( x - ( # ` ( reverse ` T ) ) ) ) = ( ( ( # ` S ) - 1 ) - ( x - ( # ` T ) ) ) ) |
| 105 | 7 | oveq1d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` ( S ++ T ) ) - 1 ) = ( ( ( # ` S ) + ( # ` T ) ) - 1 ) ) |
| 106 | 54 53 55 | addsubd | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( # ` S ) + ( # ` T ) ) - 1 ) = ( ( ( # ` S ) - 1 ) + ( # ` T ) ) ) |
| 107 | 105 106 | eqtrd | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` ( S ++ T ) ) - 1 ) = ( ( ( # ` S ) - 1 ) + ( # ` T ) ) ) |
| 108 | 107 | oveq1d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) = ( ( ( ( # ` S ) - 1 ) + ( # ` T ) ) - x ) ) |
| 109 | 108 | adantr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) = ( ( ( ( # ` S ) - 1 ) + ( # ` T ) ) - x ) ) |
| 110 | 101 104 109 | 3eqtr4rd | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) = ( ( ( # ` S ) - 1 ) - ( x - ( # ` ( reverse ` T ) ) ) ) ) |
| 111 | 110 | fveq2d | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( S ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) = ( S ` ( ( ( # ` S ) - 1 ) - ( x - ( # ` ( reverse ` T ) ) ) ) ) ) |
| 112 | simpll | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> S e. Word A ) |
|
| 113 | simplr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> T e. Word A ) |
|
| 114 | zaddcl | |- ( ( ( # ` T ) e. ZZ /\ ( # ` S ) e. ZZ ) -> ( ( # ` T ) + ( # ` S ) ) e. ZZ ) |
|
| 115 | 34 92 114 | syl2anr | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` T ) + ( # ` S ) ) e. ZZ ) |
| 116 | peano2zm | |- ( ( ( # ` T ) + ( # ` S ) ) e. ZZ -> ( ( ( # ` T ) + ( # ` S ) ) - 1 ) e. ZZ ) |
|
| 117 | 115 116 | syl | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( # ` T ) + ( # ` S ) ) - 1 ) e. ZZ ) |
| 118 | fzoval | |- ( ( ( # ` T ) + ( # ` S ) ) e. ZZ -> ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) = ( ( # ` T ) ... ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ) |
|
| 119 | 115 118 | syl | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) = ( ( # ` T ) ... ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ) |
| 120 | 119 | eleq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) <-> x e. ( ( # ` T ) ... ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ) ) |
| 121 | 120 | biimpa | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> x e. ( ( # ` T ) ... ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ) |
| 122 | fzrev2i | |- ( ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) e. ZZ /\ x e. ( ( # ` T ) ... ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ) -> ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - x ) e. ( ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ... ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( # ` T ) ) ) ) |
|
| 123 | 117 121 122 | syl2an2r | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - x ) e. ( ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ... ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( # ` T ) ) ) ) |
| 124 | 52 | oveq1d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) = ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - x ) ) |
| 125 | 124 | adantr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) = ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - x ) ) |
| 126 | 92 | adantr | |- ( ( S e. Word A /\ T e. Word A ) -> ( # ` S ) e. ZZ ) |
| 127 | fzoval | |- ( ( # ` S ) e. ZZ -> ( 0 ..^ ( # ` S ) ) = ( 0 ... ( ( # ` S ) - 1 ) ) ) |
|
| 128 | 126 127 | syl | |- ( ( S e. Word A /\ T e. Word A ) -> ( 0 ..^ ( # ` S ) ) = ( 0 ... ( ( # ` S ) - 1 ) ) ) |
| 129 | 117 | zcnd | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( # ` T ) + ( # ` S ) ) - 1 ) e. CC ) |
| 130 | 129 | subidd | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) = 0 ) |
| 131 | addcl | |- ( ( ( # ` T ) e. CC /\ ( # ` S ) e. CC ) -> ( ( # ` T ) + ( # ` S ) ) e. CC ) |
|
| 132 | 11 9 131 | syl2anr | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` T ) + ( # ` S ) ) e. CC ) |
| 133 | 132 55 53 | sub32d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( # ` T ) ) = ( ( ( ( # ` T ) + ( # ` S ) ) - ( # ` T ) ) - 1 ) ) |
| 134 | pncan2 | |- ( ( ( # ` T ) e. CC /\ ( # ` S ) e. CC ) -> ( ( ( # ` T ) + ( # ` S ) ) - ( # ` T ) ) = ( # ` S ) ) |
|
| 135 | 11 9 134 | syl2anr | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( # ` T ) + ( # ` S ) ) - ( # ` T ) ) = ( # ` S ) ) |
| 136 | 135 | oveq1d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( ( # ` T ) + ( # ` S ) ) - ( # ` T ) ) - 1 ) = ( ( # ` S ) - 1 ) ) |
| 137 | 133 136 | eqtrd | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( # ` T ) ) = ( ( # ` S ) - 1 ) ) |
| 138 | 130 137 | oveq12d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ... ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( # ` T ) ) ) = ( 0 ... ( ( # ` S ) - 1 ) ) ) |
| 139 | 128 138 | eqtr4d | |- ( ( S e. Word A /\ T e. Word A ) -> ( 0 ..^ ( # ` S ) ) = ( ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ... ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( # ` T ) ) ) ) |
| 140 | 139 | adantr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( 0 ..^ ( # ` S ) ) = ( ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( ( ( # ` T ) + ( # ` S ) ) - 1 ) ) ... ( ( ( ( # ` T ) + ( # ` S ) ) - 1 ) - ( # ` T ) ) ) ) |
| 141 | 123 125 140 | 3eltr4d | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) e. ( 0 ..^ ( # ` S ) ) ) |
| 142 | ccatval1 | |- ( ( S e. Word A /\ T e. Word A /\ ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ T ) ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) = ( S ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) ) |
|
| 143 | 112 113 141 142 | syl3anc | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( S ++ T ) ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) = ( S ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) ) |
| 144 | simpl | |- ( ( S e. Word A /\ T e. Word A ) -> S e. Word A ) |
|
| 145 | 102 | ad2antlr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( x - ( # ` ( reverse ` T ) ) ) = ( x - ( # ` T ) ) ) |
| 146 | id | |- ( x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) -> x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
|
| 147 | fzosubel3 | |- ( ( x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) /\ ( # ` S ) e. ZZ ) -> ( x - ( # ` T ) ) e. ( 0 ..^ ( # ` S ) ) ) |
|
| 148 | 146 126 147 | syl2anr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( x - ( # ` T ) ) e. ( 0 ..^ ( # ` S ) ) ) |
| 149 | 145 148 | eqeltrd | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( x - ( # ` ( reverse ` T ) ) ) e. ( 0 ..^ ( # ` S ) ) ) |
| 150 | revfv | |- ( ( S e. Word A /\ ( x - ( # ` ( reverse ` T ) ) ) e. ( 0 ..^ ( # ` S ) ) ) -> ( ( reverse ` S ) ` ( x - ( # ` ( reverse ` T ) ) ) ) = ( S ` ( ( ( # ` S ) - 1 ) - ( x - ( # ` ( reverse ` T ) ) ) ) ) ) |
|
| 151 | 144 149 150 | syl2an2r | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( reverse ` S ) ` ( x - ( # ` ( reverse ` T ) ) ) ) = ( S ` ( ( ( # ` S ) - 1 ) - ( x - ( # ` ( reverse ` T ) ) ) ) ) ) |
| 152 | 111 143 151 | 3eqtr4d | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( S ++ T ) ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) = ( ( reverse ` S ) ` ( x - ( # ` ( reverse ` T ) ) ) ) ) |
| 153 | fzoss1 | |- ( ( # ` T ) e. ( ZZ>= ` 0 ) -> ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) C_ ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
|
| 154 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 155 | 153 154 | eleq2s | |- ( ( # ` T ) e. NN0 -> ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) C_ ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
| 156 | 10 155 | syl | |- ( T e. Word A -> ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) C_ ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
| 157 | 156 | adantl | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) C_ ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
| 158 | 51 | oveq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( 0 ..^ ( # ` ( S ++ T ) ) ) = ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
| 159 | 157 158 | sseqtrrd | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) C_ ( 0 ..^ ( # ` ( S ++ T ) ) ) ) |
| 160 | 159 | sselda | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> x e. ( 0 ..^ ( # ` ( S ++ T ) ) ) ) |
| 161 | 1 160 81 | syl2an2r | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( reverse ` ( S ++ T ) ) ` x ) = ( ( S ++ T ) ` ( ( ( # ` ( S ++ T ) ) - 1 ) - x ) ) ) |
| 162 | 18 | ad2antlr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( reverse ` T ) e. Word A ) |
| 163 | 19 | ad2antrr | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( reverse ` S ) e. Word A ) |
| 164 | 85 28 | oveq12d | |- ( ( S e. Word A /\ T e. Word A ) -> ( ( # ` ( reverse ` T ) ) ..^ ( ( # ` ( reverse ` T ) ) + ( # ` ( reverse ` S ) ) ) ) = ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) |
| 165 | 164 | eleq2d | |- ( ( S e. Word A /\ T e. Word A ) -> ( x e. ( ( # ` ( reverse ` T ) ) ..^ ( ( # ` ( reverse ` T ) ) + ( # ` ( reverse ` S ) ) ) ) <-> x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) ) |
| 166 | 165 | biimpar | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> x e. ( ( # ` ( reverse ` T ) ) ..^ ( ( # ` ( reverse ` T ) ) + ( # ` ( reverse ` S ) ) ) ) ) |
| 167 | ccatval2 | |- ( ( ( reverse ` T ) e. Word A /\ ( reverse ` S ) e. Word A /\ x e. ( ( # ` ( reverse ` T ) ) ..^ ( ( # ` ( reverse ` T ) ) + ( # ` ( reverse ` S ) ) ) ) ) -> ( ( ( reverse ` T ) ++ ( reverse ` S ) ) ` x ) = ( ( reverse ` S ) ` ( x - ( # ` ( reverse ` T ) ) ) ) ) |
|
| 168 | 162 163 166 167 | syl3anc | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( ( reverse ` T ) ++ ( reverse ` S ) ) ` x ) = ( ( reverse ` S ) ` ( x - ( # ` ( reverse ` T ) ) ) ) ) |
| 169 | 152 161 168 | 3eqtr4d | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( reverse ` ( S ++ T ) ) ` x ) = ( ( ( reverse ` T ) ++ ( reverse ` S ) ) ` x ) ) |
| 170 | 91 169 | jaodan | |- ( ( ( S e. Word A /\ T e. Word A ) /\ ( x e. ( 0 ..^ ( # ` T ) ) \/ x e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` S ) ) ) ) ) -> ( ( reverse ` ( S ++ T ) ) ` x ) = ( ( ( reverse ` T ) ++ ( reverse ` S ) ) ` x ) ) |
| 171 | 37 170 | syldan | |- ( ( ( S e. Word A /\ T e. Word A ) /\ x e. ( 0 ..^ ( ( # ` T ) + ( # ` S ) ) ) ) -> ( ( reverse ` ( S ++ T ) ) ` x ) = ( ( ( reverse ` T ) ++ ( reverse ` S ) ) ` x ) ) |
| 172 | 17 32 171 | eqfnfvd | |- ( ( S e. Word A /\ T e. Word A ) -> ( reverse ` ( S ++ T ) ) = ( ( reverse ` T ) ++ ( reverse ` S ) ) ) |