This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reverse of a word has the same length as the original. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revlen | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revval | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝑊 ) ) = ( ♯ ‘ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) ) |
| 3 | wrdf | ⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 5 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 6 | lencl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 8 | nn0z | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) | |
| 9 | fzoval | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 11 | 5 10 | eleqtrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 12 | fznn0sub2 | ⊢ ( 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 14 | 13 10 | eleqtrrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 15 | 4 14 | ffvelcdmd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ∈ 𝐴 ) |
| 16 | 15 | fmpttd | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 17 | ffn | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 18 | hashfn | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 19 | 16 17 18 | 3syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 20 | hashfzo0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 21 | 6 20 | syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 22 | 2 19 21 | 3eqtrd | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |