This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoss1 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( ( 𝐾 ..^ 𝑁 ) = ∅ → ( ( 𝐾 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ↔ ∅ ⊆ ( 𝑀 ..^ 𝑁 ) ) ) | |
| 2 | fzon0 | ⊢ ( ( 𝐾 ..^ 𝑁 ) ≠ ∅ ↔ 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) ) | |
| 3 | elfzoel2 | ⊢ ( 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 4 | 2 3 | sylbi | ⊢ ( ( 𝐾 ..^ 𝑁 ) ≠ ∅ → 𝑁 ∈ ℤ ) |
| 5 | fzss1 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ... ( 𝑁 − 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ... ( 𝑁 − 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 7 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ..^ 𝑁 ) = ( 𝐾 ... ( 𝑁 − 1 ) ) ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ..^ 𝑁 ) = ( 𝐾 ... ( 𝑁 − 1 ) ) ) |
| 9 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 11 | 6 8 10 | 3sstr4d | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |
| 12 | 4 11 | sylan2 | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 ..^ 𝑁 ) ≠ ∅ ) → ( 𝐾 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |
| 13 | 0ss | ⊢ ∅ ⊆ ( 𝑀 ..^ 𝑁 ) | |
| 14 | 13 | a1i | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ∅ ⊆ ( 𝑀 ..^ 𝑁 ) ) |
| 15 | 1 12 14 | pm2.61ne | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |