This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversal is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revrev | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ ( reverse ‘ 𝑊 ) ) = 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revcl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) ∈ Word 𝐴 ) | |
| 2 | revcl | ⊢ ( ( reverse ‘ 𝑊 ) ∈ Word 𝐴 → ( reverse ‘ ( reverse ‘ 𝑊 ) ) ∈ Word 𝐴 ) | |
| 3 | wrdf | ⊢ ( ( reverse ‘ ( reverse ‘ 𝑊 ) ) ∈ Word 𝐴 → ( reverse ‘ ( reverse ‘ 𝑊 ) ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( reverse ‘ 𝑊 ) ) ) ) ⟶ 𝐴 ) | |
| 4 | ffn | ⊢ ( ( reverse ‘ ( reverse ‘ 𝑊 ) ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( reverse ‘ 𝑊 ) ) ) ) ⟶ 𝐴 → ( reverse ‘ ( reverse ‘ 𝑊 ) ) Fn ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( reverse ‘ 𝑊 ) ) ) ) ) | |
| 5 | 1 2 3 4 | 4syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ ( reverse ‘ 𝑊 ) ) Fn ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( reverse ‘ 𝑊 ) ) ) ) ) |
| 6 | revlen | ⊢ ( ( reverse ‘ 𝑊 ) ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ ( reverse ‘ 𝑊 ) ) ) = ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) | |
| 7 | 1 6 | syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ ( reverse ‘ 𝑊 ) ) ) = ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) |
| 8 | revlen | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 9 | 7 8 | eqtrd | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ ( reverse ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( reverse ‘ 𝑊 ) ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 11 | 10 | fneq2d | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ( reverse ‘ ( reverse ‘ 𝑊 ) ) Fn ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( reverse ‘ 𝑊 ) ) ) ) ↔ ( reverse ‘ ( reverse ‘ 𝑊 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 12 | 5 11 | mpbid | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ ( reverse ‘ 𝑊 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 13 | wrdfn | ⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 14 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 15 | 8 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( reverse ‘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 17 | 14 16 | eleqtrrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ) |
| 18 | revfv | ⊢ ( ( ( reverse ‘ 𝑊 ) ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ) → ( ( reverse ‘ ( reverse ‘ 𝑊 ) ) ‘ 𝑥 ) = ( ( reverse ‘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( reverse ‘ 𝑊 ) ) − 1 ) − 𝑥 ) ) ) | |
| 19 | 1 17 18 | syl2an2r | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ ( reverse ‘ 𝑊 ) ) ‘ 𝑥 ) = ( ( reverse ‘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( reverse ‘ 𝑊 ) ) − 1 ) − 𝑥 ) ) ) |
| 20 | 15 | oveq1d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ ( reverse ‘ 𝑊 ) ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 21 | 20 | fvoveq1d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( reverse ‘ 𝑊 ) ) − 1 ) − 𝑥 ) ) = ( ( reverse ‘ 𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) |
| 22 | lencl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 23 | 22 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 24 | fzoval | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 26 | 25 | eleq2d | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
| 27 | 26 | biimpa | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 28 | fznn0sub2 | ⊢ ( 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 30 | 25 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 31 | 29 30 | eleqtrrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 32 | revfv | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ 𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) | |
| 33 | 31 32 | syldan | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ 𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
| 34 | peano2zm | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℤ ) | |
| 35 | 23 34 | syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℤ ) |
| 36 | 35 | zcnd | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℂ ) |
| 37 | elfzoelz | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑥 ∈ ℤ ) | |
| 38 | 37 | zcnd | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑥 ∈ ℂ ) |
| 39 | nncan | ⊢ ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) = 𝑥 ) | |
| 40 | 36 38 39 | syl2an | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) = 𝑥 ) |
| 41 | 40 | fveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) = ( 𝑊 ‘ 𝑥 ) ) |
| 42 | 33 41 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ 𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) = ( 𝑊 ‘ 𝑥 ) ) |
| 43 | 21 42 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( reverse ‘ 𝑊 ) ) − 1 ) − 𝑥 ) ) = ( 𝑊 ‘ 𝑥 ) ) |
| 44 | 19 43 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ ( reverse ‘ 𝑊 ) ) ‘ 𝑥 ) = ( 𝑊 ‘ 𝑥 ) ) |
| 45 | 12 13 44 | eqfnfvd | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ ( reverse ‘ 𝑊 ) ) = 𝑊 ) |