This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzospliti | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝐴 ∈ ( 𝐷 ..^ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℝ ) | |
| 2 | elfzoelz | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 4 | 3 | zred | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 5 | lelttric | ⊢ ( ( 𝐷 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷 ) ) | |
| 6 | 1 4 5 | syl2an2 | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷 ) ) |
| 7 | 6 | orcomd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴 ) ) |
| 8 | elfzole1 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ≤ 𝐴 ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ≤ 𝐴 ) |
| 10 | 9 | a1d | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 < 𝐷 → 𝐵 ≤ 𝐴 ) ) |
| 11 | 10 | ancrd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 < 𝐷 → ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ) ) |
| 12 | elfzolt2 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 < 𝐶 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 < 𝐶 ) |
| 14 | 13 | a1d | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ≤ 𝐴 → 𝐴 < 𝐶 ) ) |
| 15 | 14 | ancld | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ≤ 𝐴 → ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
| 16 | 11 15 | orim12d | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴 ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ∨ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) ) |
| 17 | 7 16 | mpd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ∨ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
| 18 | elfzoel1 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
| 20 | simpr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℤ ) | |
| 21 | elfzo | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ..^ 𝐷 ) ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ) ) | |
| 22 | 3 19 20 21 | syl3anc | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ..^ 𝐷 ) ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ) ) |
| 23 | elfzoel2 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
| 25 | elfzo | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐷 ..^ 𝐶 ) ↔ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) | |
| 26 | 3 20 24 25 | syl3anc | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐷 ..^ 𝐶 ) ↔ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
| 27 | 22 26 | orbi12d | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝐴 ∈ ( 𝐷 ..^ 𝐶 ) ) ↔ ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ∨ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) ) |
| 28 | 17 27 | mpbird | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝐴 ∈ ( 𝐷 ..^ 𝐶 ) ) ) |