This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014) (Proof shortened by Stefan O'Rear, 15-Aug-2015) (Proof shortened by AV, 29-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatcl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) ∈ Word 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatfval | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ) | |
| 2 | wrdf | ⊢ ( 𝑆 ∈ Word 𝐵 → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐵 ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐵 ) |
| 4 | 3 | ffvelcdmda | ⊢ ( ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ 𝐵 ) |
| 5 | wrdf | ⊢ ( 𝑇 ∈ Word 𝐵 → 𝑇 : ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⟶ 𝐵 ) | |
| 6 | 5 | ad3antlr | ⊢ ( ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝑇 : ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⟶ 𝐵 ) |
| 7 | simpr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) | |
| 8 | 7 | anim1i | ⊢ ( ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) |
| 9 | lencl | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 10 | 9 | nn0zd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
| 11 | lencl | ⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) | |
| 12 | 11 | nn0zd | ⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
| 13 | 10 12 | anim12i | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( ♯ ‘ 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ) |
| 15 | fzocatel | ⊢ ( ( ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ∧ ( ( ♯ ‘ 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) | |
| 16 | 8 14 15 | syl2anc | ⊢ ( ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 17 | 6 16 | ffvelcdmd | ⊢ ( ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ∈ 𝐵 ) |
| 18 | 4 17 | ifclda | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ∈ 𝐵 ) |
| 19 | 18 | fmpttd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ⟶ 𝐵 ) |
| 20 | iswrdi | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ⟶ 𝐵 → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ∈ Word 𝐵 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ∈ Word 𝐵 ) |
| 22 | 1 21 | eqeltrd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) ∈ Word 𝐵 ) |