This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzrev2i | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐽 − 𝐾 ) ∈ ( ( 𝐽 − 𝑁 ) ... ( 𝐽 − 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 2 | elfzel1 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℤ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 4 | elfzel2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 6 | simpl | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐽 ∈ ℤ ) | |
| 7 | elfzelz | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℤ ) |
| 9 | fzrev2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐽 − 𝐾 ) ∈ ( ( 𝐽 − 𝑁 ) ... ( 𝐽 − 𝑀 ) ) ) ) | |
| 10 | 3 5 6 8 9 | syl22anc | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐽 − 𝐾 ) ∈ ( ( 𝐽 − 𝑁 ) ... ( 𝐽 − 𝑀 ) ) ) ) |
| 11 | 1 10 | mpbid | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐽 − 𝐾 ) ∈ ( ( 𝐽 − 𝑁 ) ... ( 𝐽 − 𝑀 ) ) ) |