This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revfv | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ 𝑊 ) ‘ 𝑋 ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revval | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ( reverse ‘ 𝑊 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ‘ 𝑋 ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑋 ) ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑋 ) ) ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) | |
| 6 | fvex | ⊢ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑋 ) ) ∈ V | |
| 7 | 4 5 6 | fvmpt | ⊢ ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ‘ 𝑋 ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑋 ) ) ) |
| 8 | 2 7 | sylan9eq | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ 𝑊 ) ‘ 𝑋 ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑋 ) ) ) |