This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A corollary of Konig's Theorem konigth . Theorem 11.28 of TakeutiZaring p. 108. (Contributed by Mario Carneiro, 20-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pwcfsdom.1 | ⊢ 𝐻 = ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑦 ) ) ) | |
| Assertion | pwcfsdom | ⊢ ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwcfsdom.1 | ⊢ 𝐻 = ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 2 | onzsl | ⊢ ( 𝐴 ∈ On ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) | |
| 3 | 2 | biimpi | ⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 4 | cfom | ⊢ ( cf ‘ ω ) = ω | |
| 5 | aleph0 | ⊢ ( ℵ ‘ ∅ ) = ω | |
| 6 | 5 | fveq2i | ⊢ ( cf ‘ ( ℵ ‘ ∅ ) ) = ( cf ‘ ω ) |
| 7 | 4 6 5 | 3eqtr4i | ⊢ ( cf ‘ ( ℵ ‘ ∅ ) ) = ( ℵ ‘ ∅ ) |
| 8 | 2fveq3 | ⊢ ( 𝐴 = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ( ℵ ‘ ∅ ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝐴 = ∅ → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ ∅ ) ) | |
| 10 | 7 8 9 | 3eqtr4a | ⊢ ( 𝐴 = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) ) |
| 11 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 12 | 11 | canth2 | ⊢ ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) |
| 13 | 11 | pw2en | ⊢ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
| 14 | sdomentr | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ∧ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 15 | 12 13 14 | mp2an | ⊢ ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
| 16 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 17 | alephgeom | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 18 | omelon | ⊢ ω ∈ On | |
| 19 | 2onn | ⊢ 2o ∈ ω | |
| 20 | onelss | ⊢ ( ω ∈ On → ( 2o ∈ ω → 2o ⊆ ω ) ) | |
| 21 | 18 19 20 | mp2 | ⊢ 2o ⊆ ω |
| 22 | sstr | ⊢ ( ( 2o ⊆ ω ∧ ω ⊆ ( ℵ ‘ 𝐴 ) ) → 2o ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 23 | 21 22 | mpan | ⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
| 24 | 17 23 | sylbi | ⊢ ( 𝐴 ∈ On → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
| 25 | ssdomg | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( 2o ⊆ ( ℵ ‘ 𝐴 ) → 2o ≼ ( ℵ ‘ 𝐴 ) ) ) | |
| 26 | 16 24 25 | mpsyl | ⊢ ( 𝐴 ∈ On → 2o ≼ ( ℵ ‘ 𝐴 ) ) |
| 27 | mapdom1 | ⊢ ( 2o ≼ ( ℵ ‘ 𝐴 ) → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( 𝐴 ∈ On → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 29 | sdomdomtr | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ∧ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 30 | 15 28 29 | sylancr | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 31 | oveq2 | ⊢ ( ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) = ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 32 | 31 | breq2d | ⊢ ( ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
| 33 | 30 32 | syl5ibrcom | ⊢ ( 𝐴 ∈ On → ( ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 34 | 10 33 | syl5 | ⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 35 | alephreg | ⊢ ( cf ‘ ( ℵ ‘ suc 𝑥 ) ) = ( ℵ ‘ suc 𝑥 ) | |
| 36 | 2fveq3 | ⊢ ( 𝐴 = suc 𝑥 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ( ℵ ‘ suc 𝑥 ) ) ) | |
| 37 | fveq2 | ⊢ ( 𝐴 = suc 𝑥 → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ suc 𝑥 ) ) | |
| 38 | 35 36 37 | 3eqtr4a | ⊢ ( 𝐴 = suc 𝑥 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) ) |
| 39 | 38 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) ) |
| 40 | 39 33 | syl5 | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 41 | limelon | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) | |
| 42 | ffn | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) | |
| 43 | fnrnfv | ⊢ ( 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ran 𝑓 = { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } ) | |
| 44 | 43 | unieqd | ⊢ ( 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ∪ ran 𝑓 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } ) |
| 45 | 42 44 | syl | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∪ ran 𝑓 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } ) |
| 46 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 47 | 46 | dfiun2 | ⊢ ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } |
| 48 | 45 47 | eqtr4di | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∪ ran 𝑓 = ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ) |
| 49 | 48 | ad2antrl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 = ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ) |
| 50 | fnfvelrn | ⊢ ( ( 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) ∧ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑤 ) ∈ ran 𝑓 ) | |
| 51 | 42 50 | sylan | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑤 ) ∈ ran 𝑓 ) |
| 52 | sseq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑤 ) → ( 𝑧 ⊆ 𝑦 ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) | |
| 53 | 52 | rspcev | ⊢ ( ( ( 𝑓 ‘ 𝑤 ) ∈ ran 𝑓 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
| 54 | 51 53 | sylan | ⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
| 55 | 54 | rexlimdva2 | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ( ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
| 56 | 55 | ralimdv | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ( ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
| 57 | 56 | imp | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
| 58 | 57 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
| 59 | alephislim | ⊢ ( 𝐴 ∈ On ↔ Lim ( ℵ ‘ 𝐴 ) ) | |
| 60 | 59 | biimpi | ⊢ ( 𝐴 ∈ On → Lim ( ℵ ‘ 𝐴 ) ) |
| 61 | frn | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ran 𝑓 ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 62 | 61 | adantr | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ran 𝑓 ⊆ ( ℵ ‘ 𝐴 ) ) |
| 63 | coflim | ⊢ ( ( Lim ( ℵ ‘ 𝐴 ) ∧ ran 𝑓 ⊆ ( ℵ ‘ 𝐴 ) ) → ( ∪ ran 𝑓 = ( ℵ ‘ 𝐴 ) ↔ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) | |
| 64 | 60 62 63 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ∪ ran 𝑓 = ( ℵ ‘ 𝐴 ) ↔ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
| 65 | 58 64 | mpbird | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 = ( ℵ ‘ 𝐴 ) ) |
| 66 | 49 65 | eqtr3d | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) = ( ℵ ‘ 𝐴 ) ) |
| 67 | ffvelcdm | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ) | |
| 68 | 16 | oneli | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ On ) |
| 69 | harcard | ⊢ ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) | |
| 70 | iscard | ⊢ ( ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ∧ ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | |
| 71 | 70 | simprbi | ⊢ ( ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 72 | 69 71 | ax-mp | ⊢ ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 73 | domrefg | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ V → ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) ) | |
| 74 | 46 73 | ax-mp | ⊢ ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) |
| 75 | elharval | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ On ∧ ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 76 | 75 | biimpri | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ On ∧ ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 77 | 74 76 | mpan2 | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ On → ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 78 | breq1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | |
| 79 | 78 | rspccv | ⊢ ( ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 80 | 72 77 79 | mpsyl | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ On → ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 81 | 67 68 80 | 3syl | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 82 | harcl | ⊢ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On | |
| 83 | 2fveq3 | ⊢ ( 𝑦 = 𝑥 → ( har ‘ ( 𝑓 ‘ 𝑦 ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 84 | 83 1 | fvmptg | ⊢ ( ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ∧ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ) → ( 𝐻 ‘ 𝑥 ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 85 | 82 84 | mpan2 | ⊢ ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( 𝐻 ‘ 𝑥 ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 86 | 85 | breq2d | ⊢ ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 87 | 86 | adantl | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 88 | 81 87 | mpbird | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ) |
| 89 | 88 | ralrimiva | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ) |
| 90 | fvex | ⊢ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ∈ V | |
| 91 | eqid | ⊢ ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) = ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) | |
| 92 | eqid | ⊢ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) = X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) | |
| 93 | 90 91 92 | konigth | ⊢ ( ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 94 | 89 93 | syl | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 95 | 94 | ad2antrl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 96 | 66 95 | eqbrtrrd | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 97 | 41 96 | sylan | ⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 98 | ovex | ⊢ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ∈ V | |
| 99 | 67 | ex | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 100 | alephlim | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) | |
| 101 | 100 | eleq2d | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) ) |
| 102 | eliun | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) ) | |
| 103 | alephcard | ⊢ ( card ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) | |
| 104 | 103 | eleq2i | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) ) |
| 105 | cardsdomelir | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( card ‘ ( ℵ ‘ 𝑦 ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) | |
| 106 | 104 105 | sylbir | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) → ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
| 107 | elharval | ⊢ ( ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( ℵ ‘ 𝑦 ) ∈ On ∧ ( ℵ ‘ 𝑦 ) ≼ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 108 | 107 | simprbi | ⊢ ( ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ( ℵ ‘ 𝑦 ) ≼ ( 𝑓 ‘ 𝑥 ) ) |
| 109 | domnsym | ⊢ ( ( ℵ ‘ 𝑦 ) ≼ ( 𝑓 ‘ 𝑥 ) → ¬ ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) | |
| 110 | 108 109 | syl | ⊢ ( ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ¬ ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
| 111 | 110 | con2i | ⊢ ( ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) → ¬ ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 112 | alephon | ⊢ ( ℵ ‘ 𝑦 ) ∈ On | |
| 113 | ontri1 | ⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ∧ ( ℵ ‘ 𝑦 ) ∈ On ) → ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ↔ ¬ ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | |
| 114 | 82 112 113 | mp2an | ⊢ ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ↔ ¬ ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 115 | 111 114 | sylibr | ⊢ ( ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ) |
| 116 | 106 115 | syl | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ) |
| 117 | alephord2i | ⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ 𝐴 → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) ) | |
| 118 | 117 | imp | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 119 | ontr2 | ⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ On ) → ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) | |
| 120 | 82 16 119 | mp2an | ⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 121 | 116 118 120 | syl2anr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 122 | 121 | rexlimdva2 | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 123 | 102 122 | biimtrid | ⊢ ( 𝐴 ∈ On → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 124 | 41 123 | syl | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 125 | 101 124 | sylbid | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 126 | 99 125 | sylan9r | ⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 127 | 126 | imp | ⊢ ( ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 128 | 83 | cbvmptv | ⊢ ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 129 | 1 128 | eqtri | ⊢ 𝐻 = ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 130 | 127 129 | fmptd | ⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) |
| 131 | ffvelcdm | ⊢ ( ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ) | |
| 132 | onelss | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ( 𝐻 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) ) ) | |
| 133 | 16 131 132 | mpsyl | ⊢ ( ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) ) |
| 134 | 133 | ralrimiva | ⊢ ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) ) |
| 135 | ss2ixp | ⊢ ( ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( ℵ ‘ 𝐴 ) ) | |
| 136 | 90 11 | ixpconst | ⊢ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( ℵ ‘ 𝐴 ) = ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |
| 137 | 135 136 | sseqtrdi | ⊢ ( ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 138 | 130 134 137 | 3syl | ⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 139 | ssdomg | ⊢ ( ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ∈ V → ( X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) | |
| 140 | 98 138 139 | mpsyl | ⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 141 | 140 | adantrr | ⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 142 | sdomdomtr | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ∧ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | |
| 143 | 97 141 142 | syl2anc | ⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 144 | 143 | expcom | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 145 | 144 | 3adant2 | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 146 | cfsmo | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) | |
| 147 | 16 146 | ax-mp | ⊢ ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 148 | 145 147 | exlimiiv | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 149 | 148 | a1i | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 150 | 34 40 149 | 3jaod | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 151 | 3 150 | mpd | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 152 | alephfnon | ⊢ ℵ Fn On | |
| 153 | 152 | fndmi | ⊢ dom ℵ = On |
| 154 | 153 | eleq2i | ⊢ ( 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On ) |
| 155 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) | |
| 156 | 1n0 | ⊢ 1o ≠ ∅ | |
| 157 | 1oex | ⊢ 1o ∈ V | |
| 158 | 157 | 0sdom | ⊢ ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) |
| 159 | 156 158 | mpbir | ⊢ ∅ ≺ 1o |
| 160 | id | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) = ∅ ) | |
| 161 | fveq2 | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ∅ ) ) | |
| 162 | cf0 | ⊢ ( cf ‘ ∅ ) = ∅ | |
| 163 | 161 162 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ∅ ) |
| 164 | 160 163 | oveq12d | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) = ( ∅ ↑m ∅ ) ) |
| 165 | 0ex | ⊢ ∅ ∈ V | |
| 166 | map0e | ⊢ ( ∅ ∈ V → ( ∅ ↑m ∅ ) = 1o ) | |
| 167 | 165 166 | ax-mp | ⊢ ( ∅ ↑m ∅ ) = 1o |
| 168 | 164 167 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) = 1o ) |
| 169 | 160 168 | breq12d | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ↔ ∅ ≺ 1o ) ) |
| 170 | 159 169 | mpbiri | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 171 | 155 170 | syl | ⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 172 | 154 171 | sylnbir | ⊢ ( ¬ 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 173 | 151 172 | pm2.61i | ⊢ ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |