This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The map in cff1 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfsmo | ⊢ ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq | ⊢ ( 𝑥 = 𝑧 → dom 𝑥 = dom 𝑧 ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑥 = 𝑧 → ( ℎ ‘ dom 𝑥 ) = ( ℎ ‘ dom 𝑧 ) ) |
| 3 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑥 ‘ 𝑛 ) = ( 𝑥 ‘ 𝑚 ) ) | |
| 4 | suceq | ⊢ ( ( 𝑥 ‘ 𝑛 ) = ( 𝑥 ‘ 𝑚 ) → suc ( 𝑥 ‘ 𝑛 ) = suc ( 𝑥 ‘ 𝑚 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑛 = 𝑚 → suc ( 𝑥 ‘ 𝑛 ) = suc ( 𝑥 ‘ 𝑚 ) ) |
| 6 | 5 | cbviunv | ⊢ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) = ∪ 𝑚 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑚 ) |
| 7 | fveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ‘ 𝑚 ) = ( 𝑧 ‘ 𝑚 ) ) | |
| 8 | suceq | ⊢ ( ( 𝑥 ‘ 𝑚 ) = ( 𝑧 ‘ 𝑚 ) → suc ( 𝑥 ‘ 𝑚 ) = suc ( 𝑧 ‘ 𝑚 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑥 = 𝑧 → suc ( 𝑥 ‘ 𝑚 ) = suc ( 𝑧 ‘ 𝑚 ) ) |
| 10 | 1 9 | iuneq12d | ⊢ ( 𝑥 = 𝑧 → ∪ 𝑚 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑚 ) = ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑚 ) ) |
| 11 | 6 10 | eqtrid | ⊢ ( 𝑥 = 𝑧 → ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) = ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑚 ) ) |
| 12 | 2 11 | uneq12d | ⊢ ( 𝑥 = 𝑧 → ( ( ℎ ‘ dom 𝑥 ) ∪ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) ) = ( ( ℎ ‘ dom 𝑧 ) ∪ ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑚 ) ) ) |
| 13 | 12 | cbvmptv | ⊢ ( 𝑥 ∈ V ↦ ( ( ℎ ‘ dom 𝑥 ) ∪ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑧 ∈ V ↦ ( ( ℎ ‘ dom 𝑧 ) ∪ ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑚 ) ) ) |
| 14 | eqid | ⊢ ( recs ( ( 𝑥 ∈ V ↦ ( ( ℎ ‘ dom 𝑥 ) ∪ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) ) ) ) ↾ ( cf ‘ 𝐴 ) ) = ( recs ( ( 𝑥 ∈ V ↦ ( ( ℎ ‘ dom 𝑥 ) ∪ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) ) ) ) ↾ ( cf ‘ 𝐴 ) ) | |
| 15 | 13 14 | cfsmolem | ⊢ ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |