This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem exlimiiv

Description: Inference (Rule C) associated with exlimiv . (Contributed by BJ, 19-Dec-2020)

Ref Expression
Hypotheses exlimiv.1 ( 𝜑𝜓 )
exlimiiv.2 𝑥 𝜑
Assertion exlimiiv 𝜓

Proof

Step Hyp Ref Expression
1 exlimiv.1 ( 𝜑𝜓 )
2 exlimiiv.2 𝑥 𝜑
3 1 exlimiv ( ∃ 𝑥 𝜑𝜓 )
4 2 3 ax-mp 𝜓