This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl , this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elharval | ⊢ ( 𝑌 ∈ ( har ‘ 𝑋 ) ↔ ( 𝑌 ∈ On ∧ 𝑌 ≼ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝑌 ∈ ( har ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | reldom | ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i | ⊢ ( 𝑌 ≼ 𝑋 → 𝑋 ∈ V ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑌 ∈ On ∧ 𝑌 ≼ 𝑋 ) → 𝑋 ∈ V ) |
| 5 | harval | ⊢ ( 𝑋 ∈ V → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) | |
| 6 | 5 | eleq2d | ⊢ ( 𝑋 ∈ V → ( 𝑌 ∈ ( har ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) ) |
| 7 | breq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ≼ 𝑋 ↔ 𝑌 ≼ 𝑋 ) ) | |
| 8 | 7 | elrab | ⊢ ( 𝑌 ∈ { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ↔ ( 𝑌 ∈ On ∧ 𝑌 ≼ 𝑋 ) ) |
| 9 | 6 8 | bitrdi | ⊢ ( 𝑋 ∈ V → ( 𝑌 ∈ ( har ‘ 𝑋 ) ↔ ( 𝑌 ∈ On ∧ 𝑌 ≼ 𝑋 ) ) ) |
| 10 | 1 4 9 | pm5.21nii | ⊢ ( 𝑌 ∈ ( har ‘ 𝑋 ) ↔ ( 𝑌 ∈ On ∧ 𝑌 ≼ 𝑋 ) ) |