This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephgeom | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph0 | ⊢ ( ℵ ‘ ∅ ) = ω | |
| 2 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 3 | 0elon | ⊢ ∅ ∈ On | |
| 4 | alephord3 | ⊢ ( ( ∅ ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐴 ↔ ( ℵ ‘ ∅ ) ⊆ ( ℵ ‘ 𝐴 ) ) ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐴 ∈ On → ( ∅ ⊆ 𝐴 ↔ ( ℵ ‘ ∅ ) ⊆ ( ℵ ‘ 𝐴 ) ) ) |
| 6 | 2 5 | mpbii | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ ∅ ) ⊆ ( ℵ ‘ 𝐴 ) ) |
| 7 | 1 6 | eqsstrrid | ⊢ ( 𝐴 ∈ On → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 8 | peano1 | ⊢ ∅ ∈ ω | |
| 9 | ordom | ⊢ Ord ω | |
| 10 | ord0 | ⊢ Ord ∅ | |
| 11 | ordtri1 | ⊢ ( ( Ord ω ∧ Ord ∅ ) → ( ω ⊆ ∅ ↔ ¬ ∅ ∈ ω ) ) | |
| 12 | 9 10 11 | mp2an | ⊢ ( ω ⊆ ∅ ↔ ¬ ∅ ∈ ω ) |
| 13 | 12 | con2bii | ⊢ ( ∅ ∈ ω ↔ ¬ ω ⊆ ∅ ) |
| 14 | 8 13 | mpbi | ⊢ ¬ ω ⊆ ∅ |
| 15 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) | |
| 16 | 15 | sseq2d | ⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ω ⊆ ( ℵ ‘ 𝐴 ) ↔ ω ⊆ ∅ ) ) |
| 17 | 14 16 | mtbiri | ⊢ ( ¬ 𝐴 ∈ dom ℵ → ¬ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 18 | 17 | con4i | ⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → 𝐴 ∈ dom ℵ ) |
| 19 | alephfnon | ⊢ ℵ Fn On | |
| 20 | 19 | fndmi | ⊢ dom ℵ = On |
| 21 | 18 20 | eleqtrdi | ⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → 𝐴 ∈ On ) |
| 22 | 7 21 | impbii | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |