This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A corollary of Konig's Theorem konigth . Theorem 11.28 of TakeutiZaring p. 108. (Contributed by Mario Carneiro, 20-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pwcfsdom.1 | |- H = ( y e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` y ) ) ) |
|
| Assertion | pwcfsdom | |- ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwcfsdom.1 | |- H = ( y e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` y ) ) ) |
|
| 2 | onzsl | |- ( A e. On <-> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
|
| 3 | 2 | biimpi | |- ( A e. On -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 4 | cfom | |- ( cf ` _om ) = _om |
|
| 5 | aleph0 | |- ( aleph ` (/) ) = _om |
|
| 6 | 5 | fveq2i | |- ( cf ` ( aleph ` (/) ) ) = ( cf ` _om ) |
| 7 | 4 6 5 | 3eqtr4i | |- ( cf ` ( aleph ` (/) ) ) = ( aleph ` (/) ) |
| 8 | 2fveq3 | |- ( A = (/) -> ( cf ` ( aleph ` A ) ) = ( cf ` ( aleph ` (/) ) ) ) |
|
| 9 | fveq2 | |- ( A = (/) -> ( aleph ` A ) = ( aleph ` (/) ) ) |
|
| 10 | 7 8 9 | 3eqtr4a | |- ( A = (/) -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) |
| 11 | fvex | |- ( aleph ` A ) e. _V |
|
| 12 | 11 | canth2 | |- ( aleph ` A ) ~< ~P ( aleph ` A ) |
| 13 | 11 | pw2en | |- ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) |
| 14 | sdomentr | |- ( ( ( aleph ` A ) ~< ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) ) |
|
| 15 | 12 13 14 | mp2an | |- ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) |
| 16 | alephon | |- ( aleph ` A ) e. On |
|
| 17 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 18 | omelon | |- _om e. On |
|
| 19 | 2onn | |- 2o e. _om |
|
| 20 | onelss | |- ( _om e. On -> ( 2o e. _om -> 2o C_ _om ) ) |
|
| 21 | 18 19 20 | mp2 | |- 2o C_ _om |
| 22 | sstr | |- ( ( 2o C_ _om /\ _om C_ ( aleph ` A ) ) -> 2o C_ ( aleph ` A ) ) |
|
| 23 | 21 22 | mpan | |- ( _om C_ ( aleph ` A ) -> 2o C_ ( aleph ` A ) ) |
| 24 | 17 23 | sylbi | |- ( A e. On -> 2o C_ ( aleph ` A ) ) |
| 25 | ssdomg | |- ( ( aleph ` A ) e. On -> ( 2o C_ ( aleph ` A ) -> 2o ~<_ ( aleph ` A ) ) ) |
|
| 26 | 16 24 25 | mpsyl | |- ( A e. On -> 2o ~<_ ( aleph ` A ) ) |
| 27 | mapdom1 | |- ( 2o ~<_ ( aleph ` A ) -> ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
|
| 28 | 26 27 | syl | |- ( A e. On -> ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
| 29 | sdomdomtr | |- ( ( ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) /\ ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
|
| 30 | 15 28 29 | sylancr | |- ( A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
| 31 | oveq2 | |- ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
|
| 32 | 31 | breq2d | |- ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) <-> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) ) |
| 33 | 30 32 | syl5ibrcom | |- ( A e. On -> ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 34 | 10 33 | syl5 | |- ( A e. On -> ( A = (/) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 35 | alephreg | |- ( cf ` ( aleph ` suc x ) ) = ( aleph ` suc x ) |
|
| 36 | 2fveq3 | |- ( A = suc x -> ( cf ` ( aleph ` A ) ) = ( cf ` ( aleph ` suc x ) ) ) |
|
| 37 | fveq2 | |- ( A = suc x -> ( aleph ` A ) = ( aleph ` suc x ) ) |
|
| 38 | 35 36 37 | 3eqtr4a | |- ( A = suc x -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) |
| 39 | 38 | rexlimivw | |- ( E. x e. On A = suc x -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) |
| 40 | 39 33 | syl5 | |- ( A e. On -> ( E. x e. On A = suc x -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 41 | limelon | |- ( ( A e. _V /\ Lim A ) -> A e. On ) |
|
| 42 | ffn | |- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> f Fn ( cf ` ( aleph ` A ) ) ) |
|
| 43 | fnrnfv | |- ( f Fn ( cf ` ( aleph ` A ) ) -> ran f = { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) |
|
| 44 | 43 | unieqd | |- ( f Fn ( cf ` ( aleph ` A ) ) -> U. ran f = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) |
| 45 | 42 44 | syl | |- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U. ran f = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) |
| 46 | fvex | |- ( f ` x ) e. _V |
|
| 47 | 46 | dfiun2 | |- U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } |
| 48 | 45 47 | eqtr4di | |- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U. ran f = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ) |
| 49 | 48 | ad2antrl | |- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U. ran f = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ) |
| 50 | fnfvelrn | |- ( ( f Fn ( cf ` ( aleph ` A ) ) /\ w e. ( cf ` ( aleph ` A ) ) ) -> ( f ` w ) e. ran f ) |
|
| 51 | 42 50 | sylan | |- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ w e. ( cf ` ( aleph ` A ) ) ) -> ( f ` w ) e. ran f ) |
| 52 | sseq2 | |- ( y = ( f ` w ) -> ( z C_ y <-> z C_ ( f ` w ) ) ) |
|
| 53 | 52 | rspcev | |- ( ( ( f ` w ) e. ran f /\ z C_ ( f ` w ) ) -> E. y e. ran f z C_ y ) |
| 54 | 51 53 | sylan | |- ( ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ w e. ( cf ` ( aleph ` A ) ) ) /\ z C_ ( f ` w ) ) -> E. y e. ran f z C_ y ) |
| 55 | 54 | rexlimdva2 | |- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) -> E. y e. ran f z C_ y ) ) |
| 56 | 55 | ralimdv | |- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) |
| 57 | 56 | imp | |- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) |
| 58 | 57 | adantl | |- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) |
| 59 | alephislim | |- ( A e. On <-> Lim ( aleph ` A ) ) |
|
| 60 | 59 | biimpi | |- ( A e. On -> Lim ( aleph ` A ) ) |
| 61 | frn | |- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ran f C_ ( aleph ` A ) ) |
|
| 62 | 61 | adantr | |- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ran f C_ ( aleph ` A ) ) |
| 63 | coflim | |- ( ( Lim ( aleph ` A ) /\ ran f C_ ( aleph ` A ) ) -> ( U. ran f = ( aleph ` A ) <-> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) |
|
| 64 | 60 62 63 | syl2an | |- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( U. ran f = ( aleph ` A ) <-> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) |
| 65 | 58 64 | mpbird | |- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U. ran f = ( aleph ` A ) ) |
| 66 | 49 65 | eqtr3d | |- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = ( aleph ` A ) ) |
| 67 | ffvelcdm | |- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) e. ( aleph ` A ) ) |
|
| 68 | 16 | oneli | |- ( ( f ` x ) e. ( aleph ` A ) -> ( f ` x ) e. On ) |
| 69 | harcard | |- ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) |
|
| 70 | iscard | |- ( ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) <-> ( ( har ` ( f ` x ) ) e. On /\ A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) ) ) |
|
| 71 | 70 | simprbi | |- ( ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) -> A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) ) |
| 72 | 69 71 | ax-mp | |- A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) |
| 73 | domrefg | |- ( ( f ` x ) e. _V -> ( f ` x ) ~<_ ( f ` x ) ) |
|
| 74 | 46 73 | ax-mp | |- ( f ` x ) ~<_ ( f ` x ) |
| 75 | elharval | |- ( ( f ` x ) e. ( har ` ( f ` x ) ) <-> ( ( f ` x ) e. On /\ ( f ` x ) ~<_ ( f ` x ) ) ) |
|
| 76 | 75 | biimpri | |- ( ( ( f ` x ) e. On /\ ( f ` x ) ~<_ ( f ` x ) ) -> ( f ` x ) e. ( har ` ( f ` x ) ) ) |
| 77 | 74 76 | mpan2 | |- ( ( f ` x ) e. On -> ( f ` x ) e. ( har ` ( f ` x ) ) ) |
| 78 | breq1 | |- ( y = ( f ` x ) -> ( y ~< ( har ` ( f ` x ) ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
|
| 79 | 78 | rspccv | |- ( A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) -> ( ( f ` x ) e. ( har ` ( f ` x ) ) -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
| 80 | 72 77 79 | mpsyl | |- ( ( f ` x ) e. On -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) |
| 81 | 67 68 80 | 3syl | |- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) |
| 82 | harcl | |- ( har ` ( f ` x ) ) e. On |
|
| 83 | 2fveq3 | |- ( y = x -> ( har ` ( f ` y ) ) = ( har ` ( f ` x ) ) ) |
|
| 84 | 83 1 | fvmptg | |- ( ( x e. ( cf ` ( aleph ` A ) ) /\ ( har ` ( f ` x ) ) e. On ) -> ( H ` x ) = ( har ` ( f ` x ) ) ) |
| 85 | 82 84 | mpan2 | |- ( x e. ( cf ` ( aleph ` A ) ) -> ( H ` x ) = ( har ` ( f ` x ) ) ) |
| 86 | 85 | breq2d | |- ( x e. ( cf ` ( aleph ` A ) ) -> ( ( f ` x ) ~< ( H ` x ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
| 87 | 86 | adantl | |- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( ( f ` x ) ~< ( H ` x ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
| 88 | 81 87 | mpbird | |- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) ~< ( H ` x ) ) |
| 89 | 88 | ralrimiva | |- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> A. x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< ( H ` x ) ) |
| 90 | fvex | |- ( cf ` ( aleph ` A ) ) e. _V |
|
| 91 | eqid | |- U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) |
|
| 92 | eqid | |- X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) = X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) |
|
| 93 | 90 91 92 | konigth | |- ( A. x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< ( H ` x ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 94 | 89 93 | syl | |- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 95 | 94 | ad2antrl | |- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 96 | 66 95 | eqbrtrrd | |- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 97 | 41 96 | sylan | |- ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 98 | ovex | |- ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) e. _V |
|
| 99 | 67 | ex | |- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( x e. ( cf ` ( aleph ` A ) ) -> ( f ` x ) e. ( aleph ` A ) ) ) |
| 100 | alephlim | |- ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) = U_ y e. A ( aleph ` y ) ) |
|
| 101 | 100 | eleq2d | |- ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. ( aleph ` A ) <-> ( f ` x ) e. U_ y e. A ( aleph ` y ) ) ) |
| 102 | eliun | |- ( ( f ` x ) e. U_ y e. A ( aleph ` y ) <-> E. y e. A ( f ` x ) e. ( aleph ` y ) ) |
|
| 103 | alephcard | |- ( card ` ( aleph ` y ) ) = ( aleph ` y ) |
|
| 104 | 103 | eleq2i | |- ( ( f ` x ) e. ( card ` ( aleph ` y ) ) <-> ( f ` x ) e. ( aleph ` y ) ) |
| 105 | cardsdomelir | |- ( ( f ` x ) e. ( card ` ( aleph ` y ) ) -> ( f ` x ) ~< ( aleph ` y ) ) |
|
| 106 | 104 105 | sylbir | |- ( ( f ` x ) e. ( aleph ` y ) -> ( f ` x ) ~< ( aleph ` y ) ) |
| 107 | elharval | |- ( ( aleph ` y ) e. ( har ` ( f ` x ) ) <-> ( ( aleph ` y ) e. On /\ ( aleph ` y ) ~<_ ( f ` x ) ) ) |
|
| 108 | 107 | simprbi | |- ( ( aleph ` y ) e. ( har ` ( f ` x ) ) -> ( aleph ` y ) ~<_ ( f ` x ) ) |
| 109 | domnsym | |- ( ( aleph ` y ) ~<_ ( f ` x ) -> -. ( f ` x ) ~< ( aleph ` y ) ) |
|
| 110 | 108 109 | syl | |- ( ( aleph ` y ) e. ( har ` ( f ` x ) ) -> -. ( f ` x ) ~< ( aleph ` y ) ) |
| 111 | 110 | con2i | |- ( ( f ` x ) ~< ( aleph ` y ) -> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) |
| 112 | alephon | |- ( aleph ` y ) e. On |
|
| 113 | ontri1 | |- ( ( ( har ` ( f ` x ) ) e. On /\ ( aleph ` y ) e. On ) -> ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) <-> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) ) |
|
| 114 | 82 112 113 | mp2an | |- ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) <-> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) |
| 115 | 111 114 | sylibr | |- ( ( f ` x ) ~< ( aleph ` y ) -> ( har ` ( f ` x ) ) C_ ( aleph ` y ) ) |
| 116 | 106 115 | syl | |- ( ( f ` x ) e. ( aleph ` y ) -> ( har ` ( f ` x ) ) C_ ( aleph ` y ) ) |
| 117 | alephord2i | |- ( A e. On -> ( y e. A -> ( aleph ` y ) e. ( aleph ` A ) ) ) |
|
| 118 | 117 | imp | |- ( ( A e. On /\ y e. A ) -> ( aleph ` y ) e. ( aleph ` A ) ) |
| 119 | ontr2 | |- ( ( ( har ` ( f ` x ) ) e. On /\ ( aleph ` A ) e. On ) -> ( ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
|
| 120 | 82 16 119 | mp2an | |- ( ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) |
| 121 | 116 118 120 | syl2anr | |- ( ( ( A e. On /\ y e. A ) /\ ( f ` x ) e. ( aleph ` y ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) |
| 122 | 121 | rexlimdva2 | |- ( A e. On -> ( E. y e. A ( f ` x ) e. ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 123 | 102 122 | biimtrid | |- ( A e. On -> ( ( f ` x ) e. U_ y e. A ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 124 | 41 123 | syl | |- ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. U_ y e. A ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 125 | 101 124 | sylbid | |- ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. ( aleph ` A ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 126 | 99 125 | sylan9r | |- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> ( x e. ( cf ` ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 127 | 126 | imp | |- ( ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) |
| 128 | 83 | cbvmptv | |- ( y e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` y ) ) ) = ( x e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` x ) ) ) |
| 129 | 1 128 | eqtri | |- H = ( x e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` x ) ) ) |
| 130 | 127 129 | fmptd | |- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) |
| 131 | ffvelcdm | |- ( ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( H ` x ) e. ( aleph ` A ) ) |
|
| 132 | onelss | |- ( ( aleph ` A ) e. On -> ( ( H ` x ) e. ( aleph ` A ) -> ( H ` x ) C_ ( aleph ` A ) ) ) |
|
| 133 | 16 131 132 | mpsyl | |- ( ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( H ` x ) C_ ( aleph ` A ) ) |
| 134 | 133 | ralrimiva | |- ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) ) |
| 135 | ss2ixp | |- ( A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ X_ x e. ( cf ` ( aleph ` A ) ) ( aleph ` A ) ) |
|
| 136 | 90 11 | ixpconst | |- X_ x e. ( cf ` ( aleph ` A ) ) ( aleph ` A ) = ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) |
| 137 | 135 136 | sseqtrdi | |- ( A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 138 | 130 134 137 | 3syl | |- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 139 | ssdomg | |- ( ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) e. _V -> ( X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
|
| 140 | 98 138 139 | mpsyl | |- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 141 | 140 | adantrr | |- ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 142 | sdomdomtr | |- ( ( ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) /\ X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
|
| 143 | 97 141 142 | syl2anc | |- ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 144 | 143 | expcom | |- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 145 | 144 | 3adant2 | |- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 146 | cfsmo | |- ( ( aleph ` A ) e. On -> E. f ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) |
|
| 147 | 16 146 | ax-mp | |- E. f ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) |
| 148 | 145 147 | exlimiiv | |- ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 149 | 148 | a1i | |- ( A e. On -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 150 | 34 40 149 | 3jaod | |- ( A e. On -> ( ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 151 | 3 150 | mpd | |- ( A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 152 | alephfnon | |- aleph Fn On |
|
| 153 | 152 | fndmi | |- dom aleph = On |
| 154 | 153 | eleq2i | |- ( A e. dom aleph <-> A e. On ) |
| 155 | ndmfv | |- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
|
| 156 | 1n0 | |- 1o =/= (/) |
|
| 157 | 1oex | |- 1o e. _V |
|
| 158 | 157 | 0sdom | |- ( (/) ~< 1o <-> 1o =/= (/) ) |
| 159 | 156 158 | mpbir | |- (/) ~< 1o |
| 160 | id | |- ( ( aleph ` A ) = (/) -> ( aleph ` A ) = (/) ) |
|
| 161 | fveq2 | |- ( ( aleph ` A ) = (/) -> ( cf ` ( aleph ` A ) ) = ( cf ` (/) ) ) |
|
| 162 | cf0 | |- ( cf ` (/) ) = (/) |
|
| 163 | 161 162 | eqtrdi | |- ( ( aleph ` A ) = (/) -> ( cf ` ( aleph ` A ) ) = (/) ) |
| 164 | 160 163 | oveq12d | |- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = ( (/) ^m (/) ) ) |
| 165 | 0ex | |- (/) e. _V |
|
| 166 | map0e | |- ( (/) e. _V -> ( (/) ^m (/) ) = 1o ) |
|
| 167 | 165 166 | ax-mp | |- ( (/) ^m (/) ) = 1o |
| 168 | 164 167 | eqtrdi | |- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = 1o ) |
| 169 | 160 168 | breq12d | |- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) <-> (/) ~< 1o ) ) |
| 170 | 159 169 | mpbiri | |- ( ( aleph ` A ) = (/) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 171 | 155 170 | syl | |- ( -. A e. dom aleph -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 172 | 154 171 | sylnbir | |- ( -. A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 173 | 151 172 | pm2.61i | |- ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) |