This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of Suppes p. 228. (Contributed by Mario Carneiro, 20-Jan-2013) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harcard | ⊢ ( card ‘ ( har ‘ 𝐴 ) ) = ( har ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | ⊢ ( har ‘ 𝐴 ) ∈ On | |
| 2 | harndom | ⊢ ¬ ( har ‘ 𝐴 ) ≼ 𝐴 | |
| 3 | simpll | ⊢ ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) → 𝑥 ∈ On ) | |
| 4 | simpr | ⊢ ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) → 𝑦 ∈ ( har ‘ 𝐴 ) ) | |
| 5 | elharval | ⊢ ( 𝑦 ∈ ( har ‘ 𝐴 ) ↔ ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) | |
| 6 | 4 5 | sylib | ⊢ ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 7 | 6 | simpld | ⊢ ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) → 𝑦 ∈ On ) |
| 8 | ontri1 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥 ) ) | |
| 9 | 3 7 8 | syl2anc | ⊢ ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) → ( 𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥 ) ) |
| 10 | simpllr | ⊢ ( ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) ∧ 𝑥 ⊆ 𝑦 ) → ( har ‘ 𝐴 ) ≈ 𝑥 ) | |
| 11 | ssdomg | ⊢ ( 𝑦 ∈ V → ( 𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦 ) ) | |
| 12 | 11 | elv | ⊢ ( 𝑥 ⊆ 𝑦 → 𝑥 ≼ 𝑦 ) |
| 13 | 6 | simprd | ⊢ ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) → 𝑦 ≼ 𝐴 ) |
| 14 | domtr | ⊢ ( ( 𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝐴 ) → 𝑥 ≼ 𝐴 ) | |
| 15 | 12 13 14 | syl2anr | ⊢ ( ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) ∧ 𝑥 ⊆ 𝑦 ) → 𝑥 ≼ 𝐴 ) |
| 16 | endomtr | ⊢ ( ( ( har ‘ 𝐴 ) ≈ 𝑥 ∧ 𝑥 ≼ 𝐴 ) → ( har ‘ 𝐴 ) ≼ 𝐴 ) | |
| 17 | 10 15 16 | syl2anc | ⊢ ( ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) ∧ 𝑥 ⊆ 𝑦 ) → ( har ‘ 𝐴 ) ≼ 𝐴 ) |
| 18 | 17 | ex | ⊢ ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) → ( 𝑥 ⊆ 𝑦 → ( har ‘ 𝐴 ) ≼ 𝐴 ) ) |
| 19 | 9 18 | sylbird | ⊢ ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) → ( ¬ 𝑦 ∈ 𝑥 → ( har ‘ 𝐴 ) ≼ 𝐴 ) ) |
| 20 | 2 19 | mt3i | ⊢ ( ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) ∧ 𝑦 ∈ ( har ‘ 𝐴 ) ) → 𝑦 ∈ 𝑥 ) |
| 21 | 20 | ex | ⊢ ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) → ( 𝑦 ∈ ( har ‘ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
| 22 | 21 | ssrdv | ⊢ ( ( 𝑥 ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝑥 ) → ( har ‘ 𝐴 ) ⊆ 𝑥 ) |
| 23 | 22 | ex | ⊢ ( 𝑥 ∈ On → ( ( har ‘ 𝐴 ) ≈ 𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 24 | 23 | rgen | ⊢ ∀ 𝑥 ∈ On ( ( har ‘ 𝐴 ) ≈ 𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) |
| 25 | iscard2 | ⊢ ( ( card ‘ ( har ‘ 𝐴 ) ) = ( har ‘ 𝐴 ) ↔ ( ( har ‘ 𝐴 ) ∈ On ∧ ∀ 𝑥 ∈ On ( ( har ‘ 𝐴 ) ≈ 𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) ) ) | |
| 26 | 1 24 25 | mpbir2an | ⊢ ( card ‘ ( har ‘ 𝐴 ) ) = ( har ‘ 𝐴 ) |