This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of Enderton p. 149. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 9-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdom1 | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | 1 | brrelex2i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
| 3 | domeng | ⊢ ( 𝐵 ∈ V → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 5 | 4 | ibi | ⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) → ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 7 | simpl | ⊢ ( ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → 𝐴 ≈ 𝑥 ) | |
| 8 | enrefg | ⊢ ( 𝐶 ∈ V → 𝐶 ≈ 𝐶 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) → 𝐶 ≈ 𝐶 ) |
| 10 | mapen | ⊢ ( ( 𝐴 ≈ 𝑥 ∧ 𝐶 ≈ 𝐶 ) → ( 𝐴 ↑m 𝐶 ) ≈ ( 𝑥 ↑m 𝐶 ) ) | |
| 11 | 7 9 10 | syl2anr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → ( 𝐴 ↑m 𝐶 ) ≈ ( 𝑥 ↑m 𝐶 ) ) |
| 12 | ovex | ⊢ ( 𝐵 ↑m 𝐶 ) ∈ V | |
| 13 | 2 | ad2antrr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → 𝐵 ∈ V ) |
| 14 | simprr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → 𝑥 ⊆ 𝐵 ) | |
| 15 | mapss | ⊢ ( ( 𝐵 ∈ V ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑥 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) | |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → ( 𝑥 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
| 17 | ssdomg | ⊢ ( ( 𝐵 ↑m 𝐶 ) ∈ V → ( ( 𝑥 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) → ( 𝑥 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) ) | |
| 18 | 12 16 17 | mpsyl | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → ( 𝑥 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
| 19 | endomtr | ⊢ ( ( ( 𝐴 ↑m 𝐶 ) ≈ ( 𝑥 ↑m 𝐶 ) ∧ ( 𝑥 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) | |
| 20 | 11 18 19 | syl2anc | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
| 21 | 6 20 | exlimddv | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
| 22 | elmapex | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) | |
| 23 | 22 | simprd | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) → 𝐶 ∈ V ) |
| 24 | 23 | con3i | ⊢ ( ¬ 𝐶 ∈ V → ¬ 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) ) |
| 25 | 24 | eq0rdv | ⊢ ( ¬ 𝐶 ∈ V → ( 𝐴 ↑m 𝐶 ) = ∅ ) |
| 26 | 25 | adantl | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V ) → ( 𝐴 ↑m 𝐶 ) = ∅ ) |
| 27 | 12 | 0dom | ⊢ ∅ ≼ ( 𝐵 ↑m 𝐶 ) |
| 28 | 26 27 | eqbrtrdi | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V ) → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
| 29 | 21 28 | pm2.61dan | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |