This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006) (Revised by Mario Carneiro, 12-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss2ixp | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X 𝑥 ∈ 𝐴 𝐵 ⊆ X 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐵 ⊆ 𝐶 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 2 | 1 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 3 | 2 | anim2d | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
| 4 | 3 | ss2abdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } ⊆ { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } ) |
| 5 | df-ixp | ⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } | |
| 6 | df-ixp | ⊢ X 𝑥 ∈ 𝐴 𝐶 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } | |
| 7 | 4 5 6 | 3sstr4g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X 𝑥 ∈ 𝐴 𝐵 ⊆ X 𝑥 ∈ 𝐴 𝐶 ) |