This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A corollary of Konig's Theorem konigth . Theorem 11.29 of TakeutiZaring p. 108. (Contributed by Mario Carneiro, 20-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cfpwsdom.1 | ⊢ 𝐵 ∈ V | |
| Assertion | cfpwsdom | ⊢ ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfpwsdom.1 | ⊢ 𝐵 ∈ V | |
| 2 | ovex | ⊢ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ V | |
| 3 | 2 | cardid | ⊢ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≈ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) |
| 4 | 3 | ensymi | ⊢ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≈ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 5 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 6 | 5 | canth2 | ⊢ ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) |
| 7 | 5 | pw2en | ⊢ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
| 8 | sdomentr | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ∧ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
| 10 | mapdom1 | ⊢ ( 2o ≼ 𝐵 → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 11 | sdomdomtr | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ∧ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 13 | ficard | ⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ V → ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ Fin ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ) ) | |
| 14 | 2 13 | ax-mp | ⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ Fin ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ) |
| 15 | fict | ⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ Fin → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ω ) | |
| 16 | 14 15 | sylbir | ⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ω ) |
| 17 | alephgeom | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 18 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 19 | ssdomg | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 21 | 17 20 | sylbi | ⊢ ( 𝐴 ∈ On → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 22 | domtr | ⊢ ( ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ω ∧ ω ≼ ( ℵ ‘ 𝐴 ) ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) | |
| 23 | 16 21 22 | syl2an | ⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∧ 𝐴 ∈ On ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 24 | domnsym | ⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∧ 𝐴 ∈ On ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 26 | 25 | expcom | ⊢ ( 𝐴 ∈ On → ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ¬ ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
| 27 | 26 | con2d | ⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) → ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ) ) |
| 28 | cardidm | ⊢ ( card ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 29 | iscard3 | ⊢ ( ( card ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ( ω ∪ ran ℵ ) ) | |
| 30 | elun | ⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ( ω ∪ ran ℵ ) ↔ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∨ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) | |
| 31 | df-or | ⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∨ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ↔ ( ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) | |
| 32 | 29 30 31 | 3bitri | ⊢ ( ( card ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↔ ( ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
| 33 | 28 32 | mpbi | ⊢ ( ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) |
| 34 | 12 27 33 | syl56 | ⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
| 35 | alephfnon | ⊢ ℵ Fn On | |
| 36 | fvelrnb | ⊢ ( ℵ Fn On → ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ↔ ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) | |
| 37 | 35 36 | ax-mp | ⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ↔ ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
| 38 | 34 37 | imbitrdi | ⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 39 | eqid | ⊢ ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝑥 ) ) ↦ ( har ‘ ( 𝑧 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝑥 ) ) ↦ ( har ‘ ( 𝑧 ‘ 𝑦 ) ) ) | |
| 40 | 39 | pwcfsdom | ⊢ ( ℵ ‘ 𝑥 ) ≺ ( ( ℵ ‘ 𝑥 ) ↑m ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) |
| 41 | id | ⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) | |
| 42 | fveq2 | ⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) | |
| 43 | 41 42 | oveq12d | ⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ( ℵ ‘ 𝑥 ) ↑m ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) = ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 44 | 41 43 | breq12d | ⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ( ℵ ‘ 𝑥 ) ≺ ( ( ℵ ‘ 𝑥 ) ↑m ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 45 | 40 44 | mpbii | ⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 46 | 45 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 47 | 38 46 | syl6 | ⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 48 | 47 | imp | ⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 49 | ensdomtr | ⊢ ( ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≈ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∧ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) | |
| 50 | 4 48 49 | sylancr | ⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 51 | fvex | ⊢ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ∈ V | |
| 52 | 51 | enref | ⊢ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≈ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
| 53 | mapen | ⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≈ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∧ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≈ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) → ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) | |
| 54 | 3 52 53 | mp2an | ⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 55 | mapxpen | ⊢ ( ( 𝐵 ∈ V ∧ ( ℵ ‘ 𝐴 ) ∈ On ∧ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ∈ V ) → ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | |
| 56 | 1 18 51 55 | mp3an | ⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 57 | 54 56 | entri | ⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 58 | sdomentr | ⊢ ( ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ∧ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | |
| 59 | 50 57 58 | sylancl | ⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 60 | 5 | xpdom2 | ⊢ ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ) |
| 61 | 17 | biimpi | ⊢ ( 𝐴 ∈ On → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 62 | infxpen | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ω ⊆ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) | |
| 63 | 18 61 62 | sylancr | ⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) |
| 64 | domentr | ⊢ ( ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ∧ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) | |
| 65 | 60 63 64 | syl2an | ⊢ ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ 𝐴 ∈ On ) → ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 66 | nsuceq0 | ⊢ suc 1o ≠ ∅ | |
| 67 | dom0 | ⊢ ( suc 1o ≼ ∅ ↔ suc 1o = ∅ ) | |
| 68 | 66 67 | nemtbir | ⊢ ¬ suc 1o ≼ ∅ |
| 69 | df-2o | ⊢ 2o = suc 1o | |
| 70 | 69 | breq1i | ⊢ ( 2o ≼ 𝐵 ↔ suc 1o ≼ 𝐵 ) |
| 71 | breq2 | ⊢ ( 𝐵 = ∅ → ( suc 1o ≼ 𝐵 ↔ suc 1o ≼ ∅ ) ) | |
| 72 | 70 71 | bitrid | ⊢ ( 𝐵 = ∅ → ( 2o ≼ 𝐵 ↔ suc 1o ≼ ∅ ) ) |
| 73 | 72 | biimpcd | ⊢ ( 2o ≼ 𝐵 → ( 𝐵 = ∅ → suc 1o ≼ ∅ ) ) |
| 74 | 73 | adantld | ⊢ ( 2o ≼ 𝐵 → ( ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) = ∅ ∧ 𝐵 = ∅ ) → suc 1o ≼ ∅ ) ) |
| 75 | 68 74 | mtoi | ⊢ ( 2o ≼ 𝐵 → ¬ ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) = ∅ ∧ 𝐵 = ∅ ) ) |
| 76 | mapdom2 | ⊢ ( ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ ¬ ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) = ∅ ∧ 𝐵 = ∅ ) ) → ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) | |
| 77 | 65 75 76 | syl2an | ⊢ ( ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ 𝐴 ∈ On ) ∧ 2o ≼ 𝐵 ) → ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 78 | domnsym | ⊢ ( ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | |
| 79 | 77 78 | syl | ⊢ ( ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ 𝐴 ∈ On ) ∧ 2o ≼ 𝐵 ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 80 | 79 | expl | ⊢ ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) → ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 81 | 80 | com12 | ⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 82 | 59 81 | mt2d | ⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ¬ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 83 | domtri | ⊢ ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ∈ V ∧ ( ℵ ‘ 𝐴 ) ∈ V ) → ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ↔ ¬ ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) | |
| 84 | 51 5 83 | mp2an | ⊢ ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ↔ ¬ ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 85 | 84 | biimpri | ⊢ ( ¬ ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) → ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 86 | 82 85 | nsyl2 | ⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 87 | 86 | ex | ⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 88 | fndm | ⊢ ( ℵ Fn On → dom ℵ = On ) | |
| 89 | 35 88 | ax-mp | ⊢ dom ℵ = On |
| 90 | 89 | eleq2i | ⊢ ( 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On ) |
| 91 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) | |
| 92 | 90 91 | sylnbir | ⊢ ( ¬ 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) = ∅ ) |
| 93 | 1n0 | ⊢ 1o ≠ ∅ | |
| 94 | 1oex | ⊢ 1o ∈ V | |
| 95 | 94 | 0sdom | ⊢ ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) |
| 96 | 93 95 | mpbir | ⊢ ∅ ≺ 1o |
| 97 | id | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) = ∅ ) | |
| 98 | oveq2 | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) = ( 𝐵 ↑m ∅ ) ) | |
| 99 | map0e | ⊢ ( 𝐵 ∈ V → ( 𝐵 ↑m ∅ ) = 1o ) | |
| 100 | 1 99 | ax-mp | ⊢ ( 𝐵 ↑m ∅ ) = 1o |
| 101 | 98 100 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) = 1o ) |
| 102 | 101 | fveq2d | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) = ( card ‘ 1o ) ) |
| 103 | 1onn | ⊢ 1o ∈ ω | |
| 104 | cardnn | ⊢ ( 1o ∈ ω → ( card ‘ 1o ) = 1o ) | |
| 105 | 103 104 | ax-mp | ⊢ ( card ‘ 1o ) = 1o |
| 106 | 102 105 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) = 1o ) |
| 107 | 106 | fveq2d | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( cf ‘ 1o ) ) |
| 108 | df-1o | ⊢ 1o = suc ∅ | |
| 109 | 108 | fveq2i | ⊢ ( cf ‘ 1o ) = ( cf ‘ suc ∅ ) |
| 110 | 0elon | ⊢ ∅ ∈ On | |
| 111 | cfsuc | ⊢ ( ∅ ∈ On → ( cf ‘ suc ∅ ) = 1o ) | |
| 112 | 110 111 | ax-mp | ⊢ ( cf ‘ suc ∅ ) = 1o |
| 113 | 109 112 | eqtri | ⊢ ( cf ‘ 1o ) = 1o |
| 114 | 107 113 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = 1o ) |
| 115 | 97 114 | breq12d | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ↔ ∅ ≺ 1o ) ) |
| 116 | 96 115 | mpbiri | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 117 | 116 | a1d | ⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 118 | 92 117 | syl | ⊢ ( ¬ 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 119 | 87 118 | pm2.61i | ⊢ ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |