This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simpler expression for the cofinality predicate, at a limit ordinal. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coflim | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( ∪ 𝐵 = 𝐴 → ( 𝑥 ∈ ∪ 𝐵 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 2 | 1 | biimprd | ⊢ ( ∪ 𝐵 = 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐵 ) ) |
| 3 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) | |
| 4 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 5 | ssel2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐴 ) | |
| 6 | ordelon | ⊢ ( ( Ord 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( Lim 𝐴 ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ On ) |
| 8 | 7 | expr | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ On ) ) |
| 9 | onelss | ⊢ ( 𝑦 ∈ On → ( 𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦 ) ) | |
| 10 | 8 9 | syl6 | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦 ) ) ) |
| 11 | 10 | reximdvai | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 12 | 3 11 | biimtrid | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ∪ 𝐵 → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 13 | 2 12 | syl9r | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 = 𝐴 → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 14 | 13 | ralrimdv | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 = 𝐴 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 15 | uniss | ⊢ ( 𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ ∪ 𝐴 ) | |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∪ 𝐵 ⊆ ∪ 𝐴 ) |
| 17 | uniss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵 ) | |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∪ 𝐴 ⊆ ∪ 𝐵 ) |
| 19 | 16 18 | eqssd | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∪ 𝐵 = ∪ 𝐴 ) |
| 20 | limuni | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) | |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → 𝐴 = ∪ 𝐴 ) |
| 22 | 19 21 | eqtr4d | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∪ 𝐵 = 𝐴 ) |
| 23 | 22 | 3expia | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐵 = 𝐴 ) ) |
| 24 | 14 23 | impbid | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |