This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon | ⊢ ℵ Fn On | |
| 2 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∅ ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ ∅ ) ∈ On ) ) |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ 𝑦 ) ∈ On ) ) |
| 6 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ( ℵ ‘ suc 𝑦 ) ∈ On ) ) |
| 8 | aleph0 | ⊢ ( ℵ ‘ ∅ ) = ω | |
| 9 | omelon | ⊢ ω ∈ On | |
| 10 | 8 9 | eqeltri | ⊢ ( ℵ ‘ ∅ ) ∈ On |
| 11 | alephsuc | ⊢ ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) = ( har ‘ ( ℵ ‘ 𝑦 ) ) ) | |
| 12 | harcl | ⊢ ( har ‘ ( ℵ ‘ 𝑦 ) ) ∈ On | |
| 13 | 11 12 | eqeltrdi | ⊢ ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) ∈ On ) |
| 14 | 13 | a1d | ⊢ ( 𝑦 ∈ On → ( ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ suc 𝑦 ) ∈ On ) ) |
| 15 | vex | ⊢ 𝑥 ∈ V | |
| 16 | iunon | ⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) | |
| 17 | 15 16 | mpan | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) |
| 18 | alephlim | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ℵ ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ) | |
| 19 | 15 18 | mpan | ⊢ ( Lim 𝑥 → ( ℵ ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ) |
| 20 | 19 | eleq1d | ⊢ ( Lim 𝑥 → ( ( ℵ ‘ 𝑥 ) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On ) ) |
| 21 | 17 20 | imbitrrid | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ 𝑥 ) ∈ On ) ) |
| 22 | 3 5 7 5 10 14 21 | tfinds | ⊢ ( 𝑦 ∈ On → ( ℵ ‘ 𝑦 ) ∈ On ) |
| 23 | 22 | rgen | ⊢ ∀ 𝑦 ∈ On ( ℵ ‘ 𝑦 ) ∈ On |
| 24 | ffnfv | ⊢ ( ℵ : On ⟶ On ↔ ( ℵ Fn On ∧ ∀ 𝑦 ∈ On ( ℵ ‘ 𝑦 ) ∈ On ) ) | |
| 25 | 1 23 24 | mpbir2an | ⊢ ℵ : On ⟶ On |
| 26 | 0elon | ⊢ ∅ ∈ On | |
| 27 | 25 26 | f0cli | ⊢ ( ℵ ‘ 𝐴 ) ∈ On |