This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A successor aleph is regular. Theorem 11.15 of TakeutiZaring p. 103. (Contributed by Mario Carneiro, 9-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephreg | ⊢ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordilem1 | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) | |
| 2 | alephon | ⊢ ( ℵ ‘ suc 𝐴 ) ∈ On | |
| 3 | cff1 | ⊢ ( ( ℵ ‘ suc 𝐴 ) ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) |
| 5 | fvex | ⊢ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ V | |
| 6 | fvex | ⊢ ( 𝑓 ‘ 𝑦 ) ∈ V | |
| 7 | 6 | sucex | ⊢ suc ( 𝑓 ‘ 𝑦 ) ∈ V |
| 8 | 5 7 | iunex | ⊢ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ∈ V |
| 9 | f1f | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) → 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) → 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ) |
| 11 | simplr | ⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) → ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) | |
| 12 | 2 | oneli | ⊢ ( 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) → 𝑥 ∈ On ) |
| 13 | ffvelcdm | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ∧ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) ) | |
| 14 | onelon | ⊢ ( ( ( ℵ ‘ suc 𝐴 ) ∈ On ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ On ) | |
| 15 | 2 13 14 | sylancr | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ∧ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ) → ( 𝑓 ‘ 𝑦 ) ∈ On ) |
| 16 | onsssuc | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑓 ‘ 𝑦 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ 𝑥 ∈ suc ( 𝑓 ‘ 𝑦 ) ) ) | |
| 17 | 15 16 | sylan2 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ∧ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ) ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ 𝑥 ∈ suc ( 𝑓 ‘ 𝑦 ) ) ) |
| 18 | 17 | anassrs | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ) ∧ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ 𝑥 ∈ suc ( 𝑓 ‘ 𝑦 ) ) ) |
| 19 | 18 | rexbidva | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ) → ( ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ∈ suc ( 𝑓 ‘ 𝑦 ) ) ) |
| 20 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ∈ suc ( 𝑓 ‘ 𝑦 ) ) | |
| 21 | 19 20 | bitr4di | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ) → ( ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) ) |
| 22 | 21 | ancoms | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ∧ 𝑥 ∈ On ) → ( ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) ) |
| 23 | 12 22 | sylan2 | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ∧ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ) → ( ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) ) |
| 24 | 23 | ralbidva | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) → ( ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) 𝑥 ∈ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) ) |
| 25 | dfss3 | ⊢ ( ( ℵ ‘ suc 𝐴 ) ⊆ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) 𝑥 ∈ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) | |
| 26 | 24 25 | bitr4di | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) → ( ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ( ℵ ‘ suc 𝐴 ) ⊆ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) ) |
| 27 | 26 | biimpa | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ℵ ‘ suc 𝐴 ) ⊆ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) |
| 28 | 10 11 27 | syl2anc | ⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) → ( ℵ ‘ suc 𝐴 ) ⊆ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) |
| 29 | ssdomg | ⊢ ( ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ∈ V → ( ( ℵ ‘ suc 𝐴 ) ⊆ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) → ( ℵ ‘ suc 𝐴 ) ≼ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) ) | |
| 30 | 8 28 29 | mpsyl | ⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) → ( ℵ ‘ suc 𝐴 ) ≼ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ) |
| 31 | simprl | ⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) → 𝐴 ∈ On ) | |
| 32 | onsuc | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) | |
| 33 | alephislim | ⊢ ( suc 𝐴 ∈ On ↔ Lim ( ℵ ‘ suc 𝐴 ) ) | |
| 34 | limsuc | ⊢ ( Lim ( ℵ ‘ suc 𝐴 ) → ( ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) ↔ suc ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 35 | 33 34 | sylbi | ⊢ ( suc 𝐴 ∈ On → ( ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) ↔ suc ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 36 | 32 35 | syl | ⊢ ( 𝐴 ∈ On → ( ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) ↔ suc ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 37 | breq1 | ⊢ ( 𝑧 = suc ( 𝑓 ‘ 𝑦 ) → ( 𝑧 ≺ ( ℵ ‘ suc 𝐴 ) ↔ suc ( 𝑓 ‘ 𝑦 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 38 | alephcard | ⊢ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) | |
| 39 | iscard | ⊢ ( ( card ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) ↔ ( ( ℵ ‘ suc 𝐴 ) ∈ On ∧ ∀ 𝑧 ∈ ( ℵ ‘ suc 𝐴 ) 𝑧 ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 40 | 39 | simprbi | ⊢ ( ( card ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) → ∀ 𝑧 ∈ ( ℵ ‘ suc 𝐴 ) 𝑧 ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 41 | 38 40 | ax-mp | ⊢ ∀ 𝑧 ∈ ( ℵ ‘ suc 𝐴 ) 𝑧 ≺ ( ℵ ‘ suc 𝐴 ) |
| 42 | 37 41 | vtoclri | ⊢ ( suc ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) → suc ( 𝑓 ‘ 𝑦 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 43 | alephsucdom | ⊢ ( 𝐴 ∈ On → ( suc ( 𝑓 ‘ 𝑦 ) ≼ ( ℵ ‘ 𝐴 ) ↔ suc ( 𝑓 ‘ 𝑦 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 44 | 42 43 | imbitrrid | ⊢ ( 𝐴 ∈ On → ( suc ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) → suc ( 𝑓 ‘ 𝑦 ) ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 45 | 36 44 | sylbid | ⊢ ( 𝐴 ∈ On → ( ( 𝑓 ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝐴 ) → suc ( 𝑓 ‘ 𝑦 ) ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 46 | 13 45 | syl5 | ⊢ ( 𝐴 ∈ On → ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ∧ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ) → suc ( 𝑓 ‘ 𝑦 ) ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 47 | 46 | expdimp | ⊢ ( ( 𝐴 ∈ On ∧ 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ) → ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) → suc ( 𝑓 ‘ 𝑦 ) ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 48 | 47 | ralrimiv | ⊢ ( ( 𝐴 ∈ On ∧ 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ) → ∀ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 49 | iundom | ⊢ ( ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ V ∧ ∀ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ≼ ( ℵ ‘ 𝐴 ) ) → ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ) | |
| 50 | 5 48 49 | sylancr | ⊢ ( ( 𝐴 ∈ On ∧ 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⟶ ( ℵ ‘ suc 𝐴 ) ) → ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ) |
| 51 | 31 10 50 | syl2anc | ⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) → ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ) |
| 52 | domtr | ⊢ ( ( ( ℵ ‘ suc 𝐴 ) ≼ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ∧ ∪ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) suc ( 𝑓 ‘ 𝑦 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ) | |
| 53 | 30 51 52 | syl2anc | ⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ) |
| 54 | 53 | expcom | ⊢ ( ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) → ( ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ) ) |
| 55 | 54 | exlimdv | ⊢ ( ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) → ( ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) –1-1→ ( ℵ ‘ suc 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ suc 𝐴 ) ∃ 𝑦 ∈ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ) ) |
| 56 | 4 55 | mpi | ⊢ ( ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ) |
| 57 | alephgeom | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 58 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 59 | infxpen | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ω ⊆ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) | |
| 60 | 58 59 | mpan | ⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) |
| 61 | 57 60 | sylbi | ⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) |
| 62 | breq1 | ⊢ ( 𝑧 = ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) → ( 𝑧 ≺ ( ℵ ‘ suc 𝐴 ) ↔ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 63 | 62 41 | vtoclri | ⊢ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) → ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 64 | alephsucdom | ⊢ ( 𝐴 ∈ On → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ↔ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 65 | 63 64 | imbitrrid | ⊢ ( 𝐴 ∈ On → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) → ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 66 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 67 | 66 | xpdom1 | ⊢ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ) |
| 68 | 65 67 | syl6 | ⊢ ( 𝐴 ∈ On → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ) ) |
| 69 | domentr | ⊢ ( ( ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ∧ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) | |
| 70 | 69 | expcom | ⊢ ( ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) → ( ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 71 | 61 68 70 | sylsyld | ⊢ ( 𝐴 ∈ On → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 72 | 71 | imp | ⊢ ( ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 73 | domtr | ⊢ ( ( ( ℵ ‘ suc 𝐴 ) ≼ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ∧ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) × ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝐴 ) ) | |
| 74 | 56 72 73 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 75 | domnsym | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝐴 ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) | |
| 76 | 74 75 | syl | ⊢ ( ( 𝐴 ∈ On ∧ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 77 | 76 | ex | ⊢ ( 𝐴 ∈ On → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 78 | 1 77 | mt2d | ⊢ ( 𝐴 ∈ On → ¬ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ) |
| 79 | cfon | ⊢ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ On | |
| 80 | cfle | ⊢ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⊆ ( ℵ ‘ suc 𝐴 ) | |
| 81 | onsseleq | ⊢ ( ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ On ∧ ( ℵ ‘ suc 𝐴 ) ∈ On ) → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ⊆ ( ℵ ‘ suc 𝐴 ) ↔ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ∨ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) ) ) ) | |
| 82 | 80 81 | mpbii | ⊢ ( ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ On ∧ ( ℵ ‘ suc 𝐴 ) ∈ On ) → ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ∨ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) ) ) |
| 83 | 79 2 82 | mp2an | ⊢ ( ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) ∨ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) ) |
| 84 | 83 | ori | ⊢ ( ¬ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) ∈ ( ℵ ‘ suc 𝐴 ) → ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) ) |
| 85 | 78 84 | syl | ⊢ ( 𝐴 ∈ On → ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) ) |
| 86 | cf0 | ⊢ ( cf ‘ ∅ ) = ∅ | |
| 87 | alephfnon | ⊢ ℵ Fn On | |
| 88 | 87 | fndmi | ⊢ dom ℵ = On |
| 89 | 88 | eleq2i | ⊢ ( suc 𝐴 ∈ dom ℵ ↔ suc 𝐴 ∈ On ) |
| 90 | onsucb | ⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) | |
| 91 | 89 90 | bitr4i | ⊢ ( suc 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On ) |
| 92 | ndmfv | ⊢ ( ¬ suc 𝐴 ∈ dom ℵ → ( ℵ ‘ suc 𝐴 ) = ∅ ) | |
| 93 | 91 92 | sylnbir | ⊢ ( ¬ 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = ∅ ) |
| 94 | 93 | fveq2d | ⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) = ( cf ‘ ∅ ) ) |
| 95 | 86 94 93 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) ) |
| 96 | 85 95 | pm2.61i | ⊢ ( cf ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) |