This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance is reflexive. (Contributed by NM, 18-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domrefg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴 ) | |
| 2 | endom | ⊢ ( 𝐴 ≈ 𝐴 → 𝐴 ≼ 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴 ) |