This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation class abstraction. Variant of ovmpoga which does not require D and x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpox.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑅 = 𝑆 ) | |
| ovmpox.2 | ⊢ ( 𝑥 = 𝐴 → 𝐷 = 𝐿 ) | ||
| ovmpox.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | ||
| Assertion | ovmpox | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ 𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpox.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑅 = 𝑆 ) | |
| 2 | ovmpox.2 | ⊢ ( 𝑥 = 𝐴 → 𝐷 = 𝐿 ) | |
| 3 | ovmpox.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 4 | elex | ⊢ ( 𝑆 ∈ 𝐻 → 𝑆 ∈ V ) | |
| 5 | 3 | a1i | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) |
| 6 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) |
| 7 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐿 ) |
| 8 | simp1 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → 𝐴 ∈ 𝐶 ) | |
| 9 | simp2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → 𝐵 ∈ 𝐿 ) | |
| 10 | simp3 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → 𝑆 ∈ V ) | |
| 11 | 5 6 7 8 9 10 | ovmpodx | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |
| 12 | 4 11 | syl3an3 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ 𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |