This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralunb | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunant | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) |
| 3 | 19.26 | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) |
| 5 | df-ral | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝜑 ) ) | |
| 6 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 7 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) | |
| 8 | 6 7 | anbi12i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) |
| 9 | 4 5 8 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |