This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| Assertion | ptbasin2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 2 | 1 | ptbasin | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝐵 ) |
| 3 | 2 | ralrimivva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ∩ 𝑣 ) ∈ 𝐵 ) |
| 4 | 1 | ptuni2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐵 ) |
| 5 | ixpexg | ⊢ ( ∀ 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ V → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ V ) | |
| 6 | fvex | ⊢ ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 7 | 6 | uniex | ⊢ ∪ ( 𝐹 ‘ 𝑘 ) ∈ V |
| 8 | 7 | a1i | ⊢ ( 𝑘 ∈ 𝐴 → ∪ ( 𝐹 ‘ 𝑘 ) ∈ V ) |
| 9 | 5 8 | mprg | ⊢ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ V |
| 10 | 4 9 | eqeltrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∪ 𝐵 ∈ V ) |
| 11 | uniexb | ⊢ ( 𝐵 ∈ V ↔ ∪ 𝐵 ∈ V ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐵 ∈ V ) |
| 13 | inficl | ⊢ ( 𝐵 ∈ V → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ∩ 𝑣 ) ∈ 𝐵 ↔ ( fi ‘ 𝐵 ) = 𝐵 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ∩ 𝑣 ) ∈ 𝐵 ↔ ( fi ‘ 𝐵 ) = 𝐵 ) ) |
| 15 | 3 14 | mpbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ 𝐵 ) = 𝐵 ) |