This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| Assertion | ptuni2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 2 | 1 | ptbasid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 3 | elssuni | ⊢ ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐵 ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐵 ) |
| 5 | simpr2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) | |
| 6 | elssuni | ⊢ ( ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ( 𝑔 ‘ 𝑦 ) ⊆ ∪ ( 𝐹 ‘ 𝑦 ) ) | |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 8 | ss2ixp | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ ∪ ( 𝐹 ‘ 𝑦 ) → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) | |
| 9 | 5 7 8 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 10 | fveq2 | ⊢ ( 𝑦 = 𝑘 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 11 | 10 | unieqd | ⊢ ( 𝑦 = 𝑘 → ∪ ( 𝐹 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 12 | 11 | cbvixpv | ⊢ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) |
| 13 | 9 12 | sseqtrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 14 | velpw | ⊢ ( 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ 𝑥 ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 15 | sseq1 | ⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑥 ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 16 | 14 15 | bitrid | ⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 17 | 13 16 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 | 17 | expimpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 | 18 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 20 | 19 | abssdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 21 | 1 20 | eqsstrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐵 ⊆ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 22 | sspwuni | ⊢ ( 𝐵 ⊆ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∪ 𝐵 ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 23 | 21 22 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∪ 𝐵 ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 24 | 4 23 | eqssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐵 ) |