This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The existence of an infinite Cartesian product. x is normally a free-variable parameter in B . Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006) (Revised by Mario Carneiro, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpexg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniixp | ⊢ ∪ X 𝑥 ∈ 𝐴 𝐵 ⊆ ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 2 | iunexg | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) | |
| 3 | xpexg | ⊢ ( ( 𝐴 ∈ V ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) → ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ V ) | |
| 4 | 2 3 | syldan | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ V ) |
| 5 | ssexg | ⊢ ( ( ∪ X 𝑥 ∈ 𝐴 𝐵 ⊆ ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ V ) → ∪ X 𝑥 ∈ 𝐴 𝐵 ∈ V ) | |
| 6 | 1 4 5 | sylancr | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ∪ X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 7 | uniexb | ⊢ ( X 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∪ X 𝑥 ∈ 𝐴 𝐵 ∈ V ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 9 | ixpprc | ⊢ ( ¬ 𝐴 ∈ V → X 𝑥 ∈ 𝐴 𝐵 = ∅ ) | |
| 10 | 0ex | ⊢ ∅ ∈ V | |
| 11 | 9 10 | eqeltrdi | ⊢ ( ¬ 𝐴 ∈ V → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 12 | 11 | adantr | ⊢ ( ( ¬ 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 13 | 8 12 | pm2.61ian | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |