This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of rexlimd . For a version based on fewer axioms see rexlimdv . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof shortened by Wolf Lammen, 14-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexlimd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rexlimd.2 | ⊢ Ⅎ 𝑥 𝜒 | ||
| rexlimd.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | ||
| Assertion | rexlimd | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rexlimd.2 | ⊢ Ⅎ 𝑥 𝜒 | |
| 3 | rexlimd.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | |
| 4 | 2 | a1i | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
| 5 | 1 4 3 | rexlimd2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |