This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| Assertion | ptbasid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 2 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐴 ∈ 𝑉 ) | |
| 3 | 0fi | ⊢ ∅ ∈ Fin | |
| 4 | 3 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∅ ∈ Fin ) |
| 5 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ Top ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) | |
| 6 | 5 | adantll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
| 7 | eqid | ⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) | |
| 8 | 7 | topopn | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 9 | 6 8 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ 𝐴 ) → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 10 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ ( 𝐴 ∖ ∅ ) ) → ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 11 | 1 2 4 9 10 | elptr2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |