This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpiin | ⊢ ( 𝐵 ≠ ∅ → X 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 = ∩ 𝑦 ∈ 𝐵 X 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.28zv | ⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐵 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) | |
| 2 | eliin | ⊢ ( 𝑓 ∈ V → ( 𝑓 ∈ ∩ 𝑦 ∈ 𝐵 X 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑓 ∈ ∩ 𝑦 ∈ 𝐵 X 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) |
| 4 | vex | ⊢ 𝑓 ∈ V | |
| 5 | 4 | elixp | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 7 | 3 6 | bitri | ⊢ ( 𝑓 ∈ ∩ 𝑦 ∈ 𝐵 X 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 8 | 4 | elixp | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ) ) |
| 9 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 10 | eliin | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ V → ( ( 𝑓 ‘ 𝑥 ) ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) |
| 12 | 11 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) |
| 13 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) | |
| 14 | 12 13 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) |
| 15 | 14 | anbi2i | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 16 | 8 15 | bitri | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 17 | 1 7 16 | 3bitr4g | ⊢ ( 𝐵 ≠ ∅ → ( 𝑓 ∈ ∩ 𝑦 ∈ 𝐵 X 𝑥 ∈ 𝐴 𝐶 ↔ 𝑓 ∈ X 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ) ) |
| 18 | 17 | eqrdv | ⊢ ( 𝐵 ≠ ∅ → ∩ 𝑦 ∈ 𝐵 X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ) |
| 19 | 18 | eqcomd | ⊢ ( 𝐵 ≠ ∅ → X 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 = ∩ 𝑦 ∈ 𝐵 X 𝑥 ∈ 𝐴 𝐶 ) |