This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimiaa.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) | |
| Assertion | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimiaa.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) | |
| 2 | 1 | ex | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
| 3 | 2 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |