This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptpjpre1.1 | ⊢ 𝑋 = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) | |
| Assertion | ptpjpre1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptpjpre1.1 | ⊢ 𝑋 = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) | |
| 2 | fveq2 | ⊢ ( 𝑘 = 𝐼 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝐼 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑘 = 𝐼 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝐼 ) ) | |
| 4 | 3 | unieqd | ⊢ ( 𝑘 = 𝐼 → ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 5 | 2 4 | eleq12d | ⊢ ( 𝑘 = 𝐼 → ( ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑤 ‘ 𝐼 ) ∈ ∪ ( 𝐹 ‘ 𝐼 ) ) ) |
| 6 | vex | ⊢ 𝑤 ∈ V | |
| 7 | 6 | elixp | ⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑤 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 8 | 7 | simprbi | ⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 9 | 8 1 | eleq2s | ⊢ ( 𝑤 ∈ 𝑋 → ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 11 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐼 ∈ 𝐴 ) | |
| 12 | 5 10 11 | rspcdva | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ‘ 𝐼 ) ∈ ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 13 | 12 | fmpttd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 14 | ffn | ⊢ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝐼 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) Fn 𝑋 ) | |
| 15 | elpreima | ⊢ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) Fn 𝑋 → ( 𝑧 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ) ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑧 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ) ) |
| 17 | fveq1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ‘ 𝐼 ) = ( 𝑧 ‘ 𝐼 ) ) | |
| 18 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) | |
| 19 | fvex | ⊢ ( 𝑧 ‘ 𝐼 ) ∈ V | |
| 20 | 17 18 19 | fvmpt | ⊢ ( 𝑧 ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) = ( 𝑧 ‘ 𝐼 ) ) |
| 21 | 20 | eleq1d | ⊢ ( 𝑧 ∈ 𝑋 → ( ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ↔ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
| 22 | 21 | pm5.32i | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
| 23 | 1 | eleq2i | ⊢ ( 𝑧 ∈ 𝑋 ↔ 𝑧 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 24 | vex | ⊢ 𝑧 ∈ V | |
| 25 | 24 | elixp | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 26 | 23 25 | bitri | ⊢ ( 𝑧 ∈ 𝑋 ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 27 | 26 | anbi1i | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ↔ ( ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
| 28 | anass | ⊢ ( ( ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ) | |
| 29 | 27 28 | bitri | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ) |
| 30 | 22 29 | bitri | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ) |
| 31 | simprl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) | |
| 32 | fveq2 | ⊢ ( 𝑘 = 𝐼 → ( 𝑧 ‘ 𝑘 ) = ( 𝑧 ‘ 𝐼 ) ) | |
| 33 | iftrue | ⊢ ( 𝑘 = 𝐼 → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) = 𝑈 ) | |
| 34 | 32 33 | eleq12d | ⊢ ( 𝑘 = 𝐼 → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
| 35 | 31 34 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑘 = 𝐼 → ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 36 | simprr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 37 | iffalse | ⊢ ( ¬ 𝑘 = 𝐼 → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) = ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 38 | 37 | eleq2d | ⊢ ( ¬ 𝑘 = 𝐼 → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 39 | 36 38 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( ¬ 𝑘 = 𝐼 → ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 40 | 35 39 | pm2.61d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 41 | 40 | expr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) → ( ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) → ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 42 | 41 | ralimdv | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 43 | 42 | expimpd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 44 | 43 | ancomsd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 45 | elssuni | ⊢ ( 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) → 𝑈 ⊆ ∪ ( 𝐹 ‘ 𝐼 ) ) | |
| 46 | 45 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → 𝑈 ⊆ ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 47 | 33 4 | sseq12d | ⊢ ( 𝑘 = 𝐼 → ( if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ↔ 𝑈 ⊆ ∪ ( 𝐹 ‘ 𝐼 ) ) ) |
| 48 | 46 47 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑘 = 𝐼 → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 49 | ssid | ⊢ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) | |
| 50 | 37 49 | eqsstrdi | ⊢ ( ¬ 𝑘 = 𝐼 → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 51 | 48 50 | pm2.61d1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 52 | 51 | sseld | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 53 | 52 | ralimdv | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 54 | 34 | rspcv | ⊢ ( 𝐼 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
| 55 | 54 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
| 56 | 53 55 | jcad | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ) |
| 57 | 44 56 | impbid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 58 | 57 | anbi2d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( 𝑧 Fn 𝐴 ∧ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 59 | 30 58 | bitrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 60 | 16 59 | bitrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑧 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 61 | 24 | elixp | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 62 | 60 61 | bitr4di | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑧 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ↔ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 63 | 62 | eqrdv | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |