This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| ptbasfi.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | ||
| Assertion | ptpjpre2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 2 | ptbasfi.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | |
| 3 | 2 | ptpjpre1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) = X 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 4 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → 𝐴 ∈ 𝑉 ) | |
| 5 | snfi | ⊢ { 𝐼 } ∈ Fin | |
| 6 | 5 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → { 𝐼 } ∈ Fin ) |
| 7 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ 𝑛 = 𝐼 ) → 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) |
| 9 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ 𝑛 = 𝐼 ) → 𝑛 = 𝐼 ) | |
| 10 | 9 | fveq2d | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ 𝑛 = 𝐼 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝐼 ) ) |
| 11 | 8 10 | eleqtrrd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ 𝑛 = 𝐼 ) → 𝑈 ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 12 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → 𝐹 : 𝐴 ⟶ Top ) | |
| 13 | 12 | ffvelcdmda | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑛 ) ∈ Top ) |
| 14 | eqid | ⊢ ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) | |
| 15 | 14 | topopn | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ Top → ∪ ( 𝐹 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 16 | 13 15 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → ∪ ( 𝐹 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ ¬ 𝑛 = 𝐼 ) → ∪ ( 𝐹 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 18 | 11 17 | ifclda | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → if ( 𝑛 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑛 ) ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 19 | eldifsni | ⊢ ( 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) → 𝑛 ≠ 𝐼 ) | |
| 20 | 19 | neneqd | ⊢ ( 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) → ¬ 𝑛 = 𝐼 ) |
| 21 | 20 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) ) → ¬ 𝑛 = 𝐼 ) |
| 22 | 21 | iffalsed | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) ) → if ( 𝑛 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑛 ) ) = ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 23 | 1 4 6 18 22 | elptr2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → X 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝐵 ) |
| 24 | 3 23 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ∈ 𝐵 ) |