This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for an element of ( fiB ) . (Contributed by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfir | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝐴 ∈ ( fi ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ⊆ 𝐵 ) | |
| 2 | elpw2g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) | |
| 3 | 1 2 | imbitrrid | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ 𝒫 𝐵 ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ∈ 𝒫 𝐵 ) |
| 5 | simpr3 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ∈ Fin ) | |
| 6 | 4 5 | elind | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
| 7 | eqid | ⊢ ∩ 𝐴 = ∩ 𝐴 | |
| 8 | inteq | ⊢ ( 𝑥 = 𝐴 → ∩ 𝑥 = ∩ 𝐴 ) | |
| 9 | 8 | rspceeqv | ⊢ ( ( 𝐴 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ ∩ 𝐴 = ∩ 𝐴 ) → ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∩ 𝐴 = ∩ 𝑥 ) |
| 10 | 6 7 9 | sylancl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∩ 𝐴 = ∩ 𝑥 ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ ) | |
| 12 | intex | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∩ 𝐴 ∈ V ) |
| 14 | id | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉 ) | |
| 15 | elfi | ⊢ ( ( ∩ 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( ∩ 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∩ 𝐴 = ∩ 𝑥 ) ) | |
| 16 | 13 14 15 | syl2anr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ( ∩ 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∩ 𝐴 = ∩ 𝑥 ) ) |
| 17 | 10 16 | mpbird | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝐴 ∈ ( fi ‘ 𝐵 ) ) |