This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group has subgroups restricting the set of non-fixed points. (Contributed by Stefan O'Rear, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgsssg.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| symgsssg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | symgsssg | ⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgsssg.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | symgsssg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | eqidd | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝐺 ↾s { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) = ( 𝐺 ↾s { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) ) | |
| 4 | eqidd | ⊢ ( 𝐷 ∈ 𝑉 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) ) | |
| 5 | eqidd | ⊢ ( 𝐷 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) | |
| 6 | ssrab2 | ⊢ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ⊆ 𝐵 | |
| 7 | 6 2 | sseqtri | ⊢ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ⊆ ( Base ‘ 𝐺 ) |
| 8 | 7 | a1i | ⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ⊆ ( Base ‘ 𝐺 ) ) |
| 9 | difeq1 | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑥 ∖ I ) = ( ( 0g ‘ 𝐺 ) ∖ I ) ) | |
| 10 | 9 | dmeqd | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → dom ( 𝑥 ∖ I ) = dom ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
| 11 | 10 | sseq1d | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( ( 0g ‘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
| 12 | 1 | symggrp | ⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 13 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 14 | 2 13 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 15 | 12 14 | syl | ⊢ ( 𝐷 ∈ 𝑉 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 16 | 1 | symgid | ⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 17 | 16 | difeq1d | ⊢ ( 𝐷 ∈ 𝑉 → ( ( I ↾ 𝐷 ) ∖ I ) = ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
| 18 | 17 | dmeqd | ⊢ ( 𝐷 ∈ 𝑉 → dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
| 19 | resss | ⊢ ( I ↾ 𝐷 ) ⊆ I | |
| 20 | ssdif0 | ⊢ ( ( I ↾ 𝐷 ) ⊆ I ↔ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ ) | |
| 21 | 19 20 | mpbi | ⊢ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 22 | 21 | dmeqi | ⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ∅ |
| 23 | dm0 | ⊢ dom ∅ = ∅ | |
| 24 | 22 23 | eqtri | ⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 25 | 0ss | ⊢ ∅ ⊆ 𝑋 | |
| 26 | 24 25 | eqsstri | ⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) ⊆ 𝑋 |
| 27 | 18 26 | eqsstrrdi | ⊢ ( 𝐷 ∈ 𝑉 → dom ( ( 0g ‘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) |
| 28 | 11 15 27 | elrabd | ⊢ ( 𝐷 ∈ 𝑉 → ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
| 29 | biid | ⊢ ( 𝐷 ∈ 𝑉 ↔ 𝐷 ∈ 𝑉 ) | |
| 30 | difeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∖ I ) = ( 𝑦 ∖ I ) ) | |
| 31 | 30 | dmeqd | ⊢ ( 𝑥 = 𝑦 → dom ( 𝑥 ∖ I ) = dom ( 𝑦 ∖ I ) ) |
| 32 | 31 | sseq1d | ⊢ ( 𝑥 = 𝑦 → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) |
| 33 | 32 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ↔ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) |
| 34 | difeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∖ I ) = ( 𝑧 ∖ I ) ) | |
| 35 | 34 | dmeqd | ⊢ ( 𝑥 = 𝑧 → dom ( 𝑥 ∖ I ) = dom ( 𝑧 ∖ I ) ) |
| 36 | 35 | sseq1d | ⊢ ( 𝑥 = 𝑧 → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) |
| 37 | 36 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ↔ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) |
| 38 | difeq1 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∖ I ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ) | |
| 39 | 38 | dmeqd | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → dom ( 𝑥 ∖ I ) = dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ) |
| 40 | 39 | sseq1d | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ⊆ 𝑋 ) ) |
| 41 | 12 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 42 | simp2l | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → 𝑦 ∈ 𝐵 ) | |
| 43 | simp3l | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → 𝑧 ∈ 𝐵 ) | |
| 44 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 45 | 2 44 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 46 | 41 42 43 45 | syl3anc | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 47 | 1 2 44 | symgov | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
| 48 | 42 43 47 | syl2anc | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
| 49 | 48 | difeq1d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) = ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ) |
| 50 | 49 | dmeqd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) = dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ) |
| 51 | mvdco | ⊢ dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ⊆ ( dom ( 𝑦 ∖ I ) ∪ dom ( 𝑧 ∖ I ) ) | |
| 52 | simp2r | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) | |
| 53 | simp3r | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) | |
| 54 | 52 53 | unssd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( dom ( 𝑦 ∖ I ) ∪ dom ( 𝑧 ∖ I ) ) ⊆ 𝑋 ) |
| 55 | 51 54 | sstrid | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ⊆ 𝑋 ) |
| 56 | 50 55 | eqsstrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ⊆ 𝑋 ) |
| 57 | 40 46 56 | elrabd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
| 58 | 29 33 37 57 | syl3anb | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ∧ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
| 59 | difeq1 | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑥 ∖ I ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ) | |
| 60 | 59 | dmeqd | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → dom ( 𝑥 ∖ I ) = dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ) |
| 61 | 60 | sseq1d | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ⊆ 𝑋 ) ) |
| 62 | simprl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → 𝑦 ∈ 𝐵 ) | |
| 63 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 64 | 2 63 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 65 | 12 62 64 | syl2an2r | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 66 | 1 2 63 | symginv | ⊢ ( 𝑦 ∈ 𝐵 → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ◡ 𝑦 ) |
| 67 | 66 | ad2antrl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ◡ 𝑦 ) |
| 68 | 67 | difeq1d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) = ( ◡ 𝑦 ∖ I ) ) |
| 69 | 68 | dmeqd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) = dom ( ◡ 𝑦 ∖ I ) ) |
| 70 | 1 2 | symgbasf1o | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
| 71 | 70 | ad2antrl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
| 72 | f1omvdcnv | ⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 → dom ( ◡ 𝑦 ∖ I ) = dom ( 𝑦 ∖ I ) ) | |
| 73 | 71 72 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝑦 ∖ I ) = dom ( 𝑦 ∖ I ) ) |
| 74 | 69 73 | eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) = dom ( 𝑦 ∖ I ) ) |
| 75 | simprr | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) | |
| 76 | 74 75 | eqsstrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ⊆ 𝑋 ) |
| 77 | 61 65 76 | elrabd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
| 78 | 33 77 | sylan2b | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
| 79 | 3 4 5 8 28 58 78 12 | issubgrpd2 | ⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ∈ ( SubGrp ‘ 𝐺 ) ) |