This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxmpt | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 prefix 𝐿 ) = ( 𝑥 ∈ ( 0 ..^ 𝐿 ) ↦ ( 𝑆 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → 𝐿 ∈ ℕ0 ) | |
| 2 | pfxval | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
| 4 | simpl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝑆 ∈ Word 𝐴 ) | |
| 5 | 1 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝐿 ∈ ℕ0 ) |
| 6 | 0elfz | ⊢ ( 𝐿 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐿 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 0 ∈ ( 0 ... 𝐿 ) ) |
| 8 | simpr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 9 | swrdval2 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 0 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 0 ) ) ) ) | |
| 10 | 4 7 8 9 | syl3anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 0 ) ) ) ) |
| 11 | nn0cn | ⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ ) | |
| 12 | 11 | subid1d | ⊢ ( 𝐿 ∈ ℕ0 → ( 𝐿 − 0 ) = 𝐿 ) |
| 13 | 1 12 | syl | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( 𝐿 − 0 ) = 𝐿 ) |
| 14 | 13 | oveq2d | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( 0 ..^ ( 𝐿 − 0 ) ) = ( 0 ..^ 𝐿 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 0 ..^ ( 𝐿 − 0 ) ) = ( 0 ..^ 𝐿 ) ) |
| 16 | elfzonn0 | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) → 𝑥 ∈ ℕ0 ) | |
| 17 | nn0cn | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ ) | |
| 18 | 17 | addridd | ⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 + 0 ) = 𝑥 ) |
| 19 | 16 18 | syl | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 20 | 19 | fveq2d | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) → ( 𝑆 ‘ ( 𝑥 + 0 ) ) = ( 𝑆 ‘ 𝑥 ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) → ( 𝑆 ‘ ( 𝑥 + 0 ) ) = ( 𝑆 ‘ 𝑥 ) ) |
| 22 | 15 21 | mpteq12dva | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 0 ) ) ) = ( 𝑥 ∈ ( 0 ..^ 𝐿 ) ↦ ( 𝑆 ‘ 𝑥 ) ) ) |
| 23 | 3 10 22 | 3eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 prefix 𝐿 ) = ( 𝑥 ∈ ( 0 ..^ 𝐿 ) ↦ ( 𝑆 ‘ 𝑥 ) ) ) |