This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psgnuni . It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving A in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Proof shortened by AV, 12-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnunilem2.g | |- G = ( SymGrp ` D ) |
|
| psgnunilem2.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnunilem2.d | |- ( ph -> D e. V ) |
||
| psgnunilem2.w | |- ( ph -> W e. Word T ) |
||
| psgnunilem2.id | |- ( ph -> ( G gsum W ) = ( _I |` D ) ) |
||
| psgnunilem2.l | |- ( ph -> ( # ` W ) = L ) |
||
| psgnunilem2.ix | |- ( ph -> I e. ( 0 ..^ L ) ) |
||
| psgnunilem2.a | |- ( ph -> A e. dom ( ( W ` I ) \ _I ) ) |
||
| psgnunilem2.al | |- ( ph -> A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) ) |
||
| Assertion | psgnunilem5 | |- ( ph -> ( I + 1 ) e. ( 0 ..^ L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnunilem2.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnunilem2.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnunilem2.d | |- ( ph -> D e. V ) |
|
| 4 | psgnunilem2.w | |- ( ph -> W e. Word T ) |
|
| 5 | psgnunilem2.id | |- ( ph -> ( G gsum W ) = ( _I |` D ) ) |
|
| 6 | psgnunilem2.l | |- ( ph -> ( # ` W ) = L ) |
|
| 7 | psgnunilem2.ix | |- ( ph -> I e. ( 0 ..^ L ) ) |
|
| 8 | psgnunilem2.a | |- ( ph -> A e. dom ( ( W ` I ) \ _I ) ) |
|
| 9 | psgnunilem2.al | |- ( ph -> A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) ) |
|
| 10 | noel | |- -. A e. (/) |
|
| 11 | 5 | difeq1d | |- ( ph -> ( ( G gsum W ) \ _I ) = ( ( _I |` D ) \ _I ) ) |
| 12 | 11 | dmeqd | |- ( ph -> dom ( ( G gsum W ) \ _I ) = dom ( ( _I |` D ) \ _I ) ) |
| 13 | resss | |- ( _I |` D ) C_ _I |
|
| 14 | ssdif0 | |- ( ( _I |` D ) C_ _I <-> ( ( _I |` D ) \ _I ) = (/) ) |
|
| 15 | 13 14 | mpbi | |- ( ( _I |` D ) \ _I ) = (/) |
| 16 | 15 | dmeqi | |- dom ( ( _I |` D ) \ _I ) = dom (/) |
| 17 | dm0 | |- dom (/) = (/) |
|
| 18 | 16 17 | eqtri | |- dom ( ( _I |` D ) \ _I ) = (/) |
| 19 | 12 18 | eqtrdi | |- ( ph -> dom ( ( G gsum W ) \ _I ) = (/) ) |
| 20 | 19 | eleq2d | |- ( ph -> ( A e. dom ( ( G gsum W ) \ _I ) <-> A e. (/) ) ) |
| 21 | 10 20 | mtbiri | |- ( ph -> -. A e. dom ( ( G gsum W ) \ _I ) ) |
| 22 | 1 | symggrp | |- ( D e. V -> G e. Grp ) |
| 23 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 24 | 3 22 23 | 3syl | |- ( ph -> G e. Mnd ) |
| 25 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 26 | 2 1 25 | symgtrf | |- T C_ ( Base ` G ) |
| 27 | sswrd | |- ( T C_ ( Base ` G ) -> Word T C_ Word ( Base ` G ) ) |
|
| 28 | 26 27 | mp1i | |- ( ph -> Word T C_ Word ( Base ` G ) ) |
| 29 | 28 4 | sseldd | |- ( ph -> W e. Word ( Base ` G ) ) |
| 30 | pfxcl | |- ( W e. Word ( Base ` G ) -> ( W prefix I ) e. Word ( Base ` G ) ) |
|
| 31 | 29 30 | syl | |- ( ph -> ( W prefix I ) e. Word ( Base ` G ) ) |
| 32 | 25 | gsumwcl | |- ( ( G e. Mnd /\ ( W prefix I ) e. Word ( Base ` G ) ) -> ( G gsum ( W prefix I ) ) e. ( Base ` G ) ) |
| 33 | 24 31 32 | syl2anc | |- ( ph -> ( G gsum ( W prefix I ) ) e. ( Base ` G ) ) |
| 34 | 1 25 | symgbasf1o | |- ( ( G gsum ( W prefix I ) ) e. ( Base ` G ) -> ( G gsum ( W prefix I ) ) : D -1-1-onto-> D ) |
| 35 | 33 34 | syl | |- ( ph -> ( G gsum ( W prefix I ) ) : D -1-1-onto-> D ) |
| 36 | 35 | adantr | |- ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum ( W prefix I ) ) : D -1-1-onto-> D ) |
| 37 | wrdf | |- ( W e. Word T -> W : ( 0 ..^ ( # ` W ) ) --> T ) |
|
| 38 | 4 37 | syl | |- ( ph -> W : ( 0 ..^ ( # ` W ) ) --> T ) |
| 39 | 6 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ L ) ) |
| 40 | 7 39 | eleqtrrd | |- ( ph -> I e. ( 0 ..^ ( # ` W ) ) ) |
| 41 | 38 40 | ffvelcdmd | |- ( ph -> ( W ` I ) e. T ) |
| 42 | 26 41 | sselid | |- ( ph -> ( W ` I ) e. ( Base ` G ) ) |
| 43 | 1 25 | symgbasf1o | |- ( ( W ` I ) e. ( Base ` G ) -> ( W ` I ) : D -1-1-onto-> D ) |
| 44 | 42 43 | syl | |- ( ph -> ( W ` I ) : D -1-1-onto-> D ) |
| 45 | 44 | adantr | |- ( ( ph /\ ( I + 1 ) = L ) -> ( W ` I ) : D -1-1-onto-> D ) |
| 46 | 1 25 | symgsssg | |- ( D e. V -> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubGrp ` G ) ) |
| 47 | subgsubm | |- ( { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubGrp ` G ) -> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubMnd ` G ) ) |
|
| 48 | 3 46 47 | 3syl | |- ( ph -> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubMnd ` G ) ) |
| 49 | fzossfz | |- ( 0 ..^ L ) C_ ( 0 ... L ) |
|
| 50 | 49 7 | sselid | |- ( ph -> I e. ( 0 ... L ) ) |
| 51 | 6 | oveq2d | |- ( ph -> ( 0 ... ( # ` W ) ) = ( 0 ... L ) ) |
| 52 | 50 51 | eleqtrrd | |- ( ph -> I e. ( 0 ... ( # ` W ) ) ) |
| 53 | pfxmpt | |- ( ( W e. Word T /\ I e. ( 0 ... ( # ` W ) ) ) -> ( W prefix I ) = ( s e. ( 0 ..^ I ) |-> ( W ` s ) ) ) |
|
| 54 | 4 52 53 | syl2anc | |- ( ph -> ( W prefix I ) = ( s e. ( 0 ..^ I ) |-> ( W ` s ) ) ) |
| 55 | difeq1 | |- ( j = ( W ` s ) -> ( j \ _I ) = ( ( W ` s ) \ _I ) ) |
|
| 56 | 55 | dmeqd | |- ( j = ( W ` s ) -> dom ( j \ _I ) = dom ( ( W ` s ) \ _I ) ) |
| 57 | 56 | sseq1d | |- ( j = ( W ` s ) -> ( dom ( j \ _I ) C_ ( _V \ { A } ) <-> dom ( ( W ` s ) \ _I ) C_ ( _V \ { A } ) ) ) |
| 58 | disj2 | |- ( ( dom ( ( W ` s ) \ _I ) i^i { A } ) = (/) <-> dom ( ( W ` s ) \ _I ) C_ ( _V \ { A } ) ) |
|
| 59 | disjsn | |- ( ( dom ( ( W ` s ) \ _I ) i^i { A } ) = (/) <-> -. A e. dom ( ( W ` s ) \ _I ) ) |
|
| 60 | 58 59 | bitr3i | |- ( dom ( ( W ` s ) \ _I ) C_ ( _V \ { A } ) <-> -. A e. dom ( ( W ` s ) \ _I ) ) |
| 61 | 57 60 | bitrdi | |- ( j = ( W ` s ) -> ( dom ( j \ _I ) C_ ( _V \ { A } ) <-> -. A e. dom ( ( W ` s ) \ _I ) ) ) |
| 62 | elfzuz3 | |- ( I e. ( 0 ... L ) -> L e. ( ZZ>= ` I ) ) |
|
| 63 | 50 62 | syl | |- ( ph -> L e. ( ZZ>= ` I ) ) |
| 64 | 6 63 | eqeltrd | |- ( ph -> ( # ` W ) e. ( ZZ>= ` I ) ) |
| 65 | fzoss2 | |- ( ( # ` W ) e. ( ZZ>= ` I ) -> ( 0 ..^ I ) C_ ( 0 ..^ ( # ` W ) ) ) |
|
| 66 | 64 65 | syl | |- ( ph -> ( 0 ..^ I ) C_ ( 0 ..^ ( # ` W ) ) ) |
| 67 | 66 | sselda | |- ( ( ph /\ s e. ( 0 ..^ I ) ) -> s e. ( 0 ..^ ( # ` W ) ) ) |
| 68 | 38 | ffvelcdmda | |- ( ( ph /\ s e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` s ) e. T ) |
| 69 | 26 68 | sselid | |- ( ( ph /\ s e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` s ) e. ( Base ` G ) ) |
| 70 | 67 69 | syldan | |- ( ( ph /\ s e. ( 0 ..^ I ) ) -> ( W ` s ) e. ( Base ` G ) ) |
| 71 | fveq2 | |- ( k = s -> ( W ` k ) = ( W ` s ) ) |
|
| 72 | 71 | difeq1d | |- ( k = s -> ( ( W ` k ) \ _I ) = ( ( W ` s ) \ _I ) ) |
| 73 | 72 | dmeqd | |- ( k = s -> dom ( ( W ` k ) \ _I ) = dom ( ( W ` s ) \ _I ) ) |
| 74 | 73 | eleq2d | |- ( k = s -> ( A e. dom ( ( W ` k ) \ _I ) <-> A e. dom ( ( W ` s ) \ _I ) ) ) |
| 75 | 74 | notbid | |- ( k = s -> ( -. A e. dom ( ( W ` k ) \ _I ) <-> -. A e. dom ( ( W ` s ) \ _I ) ) ) |
| 76 | 75 | cbvralvw | |- ( A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) <-> A. s e. ( 0 ..^ I ) -. A e. dom ( ( W ` s ) \ _I ) ) |
| 77 | 9 76 | sylib | |- ( ph -> A. s e. ( 0 ..^ I ) -. A e. dom ( ( W ` s ) \ _I ) ) |
| 78 | 77 | r19.21bi | |- ( ( ph /\ s e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` s ) \ _I ) ) |
| 79 | 61 70 78 | elrabd | |- ( ( ph /\ s e. ( 0 ..^ I ) ) -> ( W ` s ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) |
| 80 | 54 79 | fmpt3d | |- ( ph -> ( W prefix I ) : ( 0 ..^ I ) --> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) |
| 81 | 80 | adantr | |- ( ( ph /\ ( I + 1 ) = L ) -> ( W prefix I ) : ( 0 ..^ I ) --> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) |
| 82 | iswrdi | |- ( ( W prefix I ) : ( 0 ..^ I ) --> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } -> ( W prefix I ) e. Word { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) |
|
| 83 | 81 82 | syl | |- ( ( ph /\ ( I + 1 ) = L ) -> ( W prefix I ) e. Word { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) |
| 84 | gsumwsubmcl | |- ( ( { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubMnd ` G ) /\ ( W prefix I ) e. Word { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) -> ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) |
|
| 85 | 48 83 84 | syl2an2r | |- ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) |
| 86 | difeq1 | |- ( j = ( G gsum ( W prefix I ) ) -> ( j \ _I ) = ( ( G gsum ( W prefix I ) ) \ _I ) ) |
|
| 87 | 86 | dmeqd | |- ( j = ( G gsum ( W prefix I ) ) -> dom ( j \ _I ) = dom ( ( G gsum ( W prefix I ) ) \ _I ) ) |
| 88 | 87 | sseq1d | |- ( j = ( G gsum ( W prefix I ) ) -> ( dom ( j \ _I ) C_ ( _V \ { A } ) <-> dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) ) ) |
| 89 | 88 | elrab | |- ( ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } <-> ( ( G gsum ( W prefix I ) ) e. ( Base ` G ) /\ dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) ) ) |
| 90 | 89 | simprbi | |- ( ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } -> dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) ) |
| 91 | disj2 | |- ( ( dom ( ( G gsum ( W prefix I ) ) \ _I ) i^i { A } ) = (/) <-> dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) ) |
|
| 92 | disjsn | |- ( ( dom ( ( G gsum ( W prefix I ) ) \ _I ) i^i { A } ) = (/) <-> -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) ) |
|
| 93 | 91 92 | bitr3i | |- ( dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) <-> -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) ) |
| 94 | 90 93 | sylib | |- ( ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } -> -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) ) |
| 95 | 85 94 | syl | |- ( ( ph /\ ( I + 1 ) = L ) -> -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) ) |
| 96 | 8 | adantr | |- ( ( ph /\ ( I + 1 ) = L ) -> A e. dom ( ( W ` I ) \ _I ) ) |
| 97 | 95 96 | jca | |- ( ( ph /\ ( I + 1 ) = L ) -> ( -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ A e. dom ( ( W ` I ) \ _I ) ) ) |
| 98 | 97 | olcd | |- ( ( ph /\ ( I + 1 ) = L ) -> ( ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ -. A e. dom ( ( W ` I ) \ _I ) ) \/ ( -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ A e. dom ( ( W ` I ) \ _I ) ) ) ) |
| 99 | excxor | |- ( ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) \/_ A e. dom ( ( W ` I ) \ _I ) ) <-> ( ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ -. A e. dom ( ( W ` I ) \ _I ) ) \/ ( -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ A e. dom ( ( W ` I ) \ _I ) ) ) ) |
|
| 100 | 98 99 | sylibr | |- ( ( ph /\ ( I + 1 ) = L ) -> ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) \/_ A e. dom ( ( W ` I ) \ _I ) ) ) |
| 101 | f1omvdco3 | |- ( ( ( G gsum ( W prefix I ) ) : D -1-1-onto-> D /\ ( W ` I ) : D -1-1-onto-> D /\ ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) \/_ A e. dom ( ( W ` I ) \ _I ) ) ) -> A e. dom ( ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) \ _I ) ) |
|
| 102 | 36 45 100 101 | syl3anc | |- ( ( ph /\ ( I + 1 ) = L ) -> A e. dom ( ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) \ _I ) ) |
| 103 | elfzo0 | |- ( I e. ( 0 ..^ L ) <-> ( I e. NN0 /\ L e. NN /\ I < L ) ) |
|
| 104 | 103 | simp2bi | |- ( I e. ( 0 ..^ L ) -> L e. NN ) |
| 105 | 7 104 | syl | |- ( ph -> L e. NN ) |
| 106 | 6 105 | eqeltrd | |- ( ph -> ( # ` W ) e. NN ) |
| 107 | wrdfin | |- ( W e. Word T -> W e. Fin ) |
|
| 108 | hashnncl | |- ( W e. Fin -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) |
|
| 109 | 4 107 108 | 3syl | |- ( ph -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) |
| 110 | 106 109 | mpbid | |- ( ph -> W =/= (/) ) |
| 111 | 110 | adantr | |- ( ( ph /\ ( I + 1 ) = L ) -> W =/= (/) ) |
| 112 | pfxlswccat | |- ( ( W e. Word T /\ W =/= (/) ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) = W ) |
|
| 113 | 112 | eqcomd | |- ( ( W e. Word T /\ W =/= (/) ) -> W = ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) ) |
| 114 | 4 111 113 | syl2an2r | |- ( ( ph /\ ( I + 1 ) = L ) -> W = ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) ) |
| 115 | 6 | oveq1d | |- ( ph -> ( ( # ` W ) - 1 ) = ( L - 1 ) ) |
| 116 | 115 | adantr | |- ( ( ph /\ ( I + 1 ) = L ) -> ( ( # ` W ) - 1 ) = ( L - 1 ) ) |
| 117 | 105 | nncnd | |- ( ph -> L e. CC ) |
| 118 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 119 | elfzoelz | |- ( I e. ( 0 ..^ L ) -> I e. ZZ ) |
|
| 120 | 7 119 | syl | |- ( ph -> I e. ZZ ) |
| 121 | 120 | zcnd | |- ( ph -> I e. CC ) |
| 122 | 117 118 121 | subadd2d | |- ( ph -> ( ( L - 1 ) = I <-> ( I + 1 ) = L ) ) |
| 123 | 122 | biimpar | |- ( ( ph /\ ( I + 1 ) = L ) -> ( L - 1 ) = I ) |
| 124 | 116 123 | eqtrd | |- ( ( ph /\ ( I + 1 ) = L ) -> ( ( # ` W ) - 1 ) = I ) |
| 125 | oveq2 | |- ( ( ( # ` W ) - 1 ) = I -> ( W prefix ( ( # ` W ) - 1 ) ) = ( W prefix I ) ) |
|
| 126 | 125 | adantl | |- ( ( ph /\ ( ( # ` W ) - 1 ) = I ) -> ( W prefix ( ( # ` W ) - 1 ) ) = ( W prefix I ) ) |
| 127 | lsw | |- ( W e. Word T -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
|
| 128 | 4 127 | syl | |- ( ph -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
| 129 | fveq2 | |- ( ( ( # ` W ) - 1 ) = I -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` I ) ) |
|
| 130 | 128 129 | sylan9eq | |- ( ( ph /\ ( ( # ` W ) - 1 ) = I ) -> ( lastS ` W ) = ( W ` I ) ) |
| 131 | 130 | s1eqd | |- ( ( ph /\ ( ( # ` W ) - 1 ) = I ) -> <" ( lastS ` W ) "> = <" ( W ` I ) "> ) |
| 132 | 126 131 | oveq12d | |- ( ( ph /\ ( ( # ` W ) - 1 ) = I ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) = ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) |
| 133 | 124 132 | syldan | |- ( ( ph /\ ( I + 1 ) = L ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) = ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) |
| 134 | 114 133 | eqtrd | |- ( ( ph /\ ( I + 1 ) = L ) -> W = ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) |
| 135 | 134 | oveq2d | |- ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum W ) = ( G gsum ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) ) |
| 136 | 42 | s1cld | |- ( ph -> <" ( W ` I ) "> e. Word ( Base ` G ) ) |
| 137 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 138 | 25 137 | gsumccat | |- ( ( G e. Mnd /\ ( W prefix I ) e. Word ( Base ` G ) /\ <" ( W ` I ) "> e. Word ( Base ` G ) ) -> ( G gsum ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) ) |
| 139 | 24 31 136 138 | syl3anc | |- ( ph -> ( G gsum ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) ) |
| 140 | 139 | adantr | |- ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) ) |
| 141 | 25 | gsumws1 | |- ( ( W ` I ) e. ( Base ` G ) -> ( G gsum <" ( W ` I ) "> ) = ( W ` I ) ) |
| 142 | 42 141 | syl | |- ( ph -> ( G gsum <" ( W ` I ) "> ) = ( W ` I ) ) |
| 143 | 142 | oveq2d | |- ( ph -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( W ` I ) ) ) |
| 144 | 1 25 137 | symgov | |- ( ( ( G gsum ( W prefix I ) ) e. ( Base ` G ) /\ ( W ` I ) e. ( Base ` G ) ) -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( W ` I ) ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) |
| 145 | 33 42 144 | syl2anc | |- ( ph -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( W ` I ) ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) |
| 146 | 143 145 | eqtrd | |- ( ph -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) |
| 147 | 146 | adantr | |- ( ( ph /\ ( I + 1 ) = L ) -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) |
| 148 | 135 140 147 | 3eqtrd | |- ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum W ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) |
| 149 | 148 | difeq1d | |- ( ( ph /\ ( I + 1 ) = L ) -> ( ( G gsum W ) \ _I ) = ( ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) \ _I ) ) |
| 150 | 149 | dmeqd | |- ( ( ph /\ ( I + 1 ) = L ) -> dom ( ( G gsum W ) \ _I ) = dom ( ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) \ _I ) ) |
| 151 | 102 150 | eleqtrrd | |- ( ( ph /\ ( I + 1 ) = L ) -> A e. dom ( ( G gsum W ) \ _I ) ) |
| 152 | 21 151 | mtand | |- ( ph -> -. ( I + 1 ) = L ) |
| 153 | fzostep1 | |- ( I e. ( 0 ..^ L ) -> ( ( I + 1 ) e. ( 0 ..^ L ) \/ ( I + 1 ) = L ) ) |
|
| 154 | 7 153 | syl | |- ( ph -> ( ( I + 1 ) e. ( 0 ..^ L ) \/ ( I + 1 ) = L ) ) |
| 155 | 154 | ord | |- ( ph -> ( -. ( I + 1 ) e. ( 0 ..^ L ) -> ( I + 1 ) = L ) ) |
| 156 | 152 155 | mt3d | |- ( ph -> ( I + 1 ) e. ( 0 ..^ L ) ) |