This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gsumwsubmcl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑊 = ∅ → ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg ∅ ) ) | |
| 2 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 3 | 2 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 4 | 1 3 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝐺 Σg 𝑊 ) = ( 0g ‘ 𝐺 ) ) |
| 5 | 4 | eleq1d | ⊢ ( 𝑊 = ∅ → ( ( 𝐺 Σg 𝑊 ) ∈ 𝑆 ↔ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | submrcl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝐺 ∈ Mnd ) |
| 10 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 11 | 10 | adantll | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 12 | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) |
| 14 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 15 | 13 14 | eleqtrdi | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 16 | wrdf | ⊢ ( 𝑊 ∈ Word 𝑆 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) | |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
| 18 | 11 | nnzd | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 19 | fzoval | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 21 | 20 | feq2d | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝑆 ) ) |
| 22 | 17 21 | mpbid | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝑆 ) |
| 23 | 6 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 25 | 22 24 | fssd | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 26 | 6 7 9 15 25 | gsumval2 | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐺 Σg 𝑊 ) = ( seq 0 ( ( +g ‘ 𝐺 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 27 | 22 | ffvelcdmda | ⊢ ( ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝑆 ) |
| 28 | 7 | submcl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 29 | 28 | 3expb | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 30 | 29 | ad4ant14 | ⊢ ( ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 31 | 15 27 30 | seqcl | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( seq 0 ( ( +g ‘ 𝐺 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∈ 𝑆 ) |
| 32 | 26 31 | eqeltrd | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐺 Σg 𝑊 ) ∈ 𝑆 ) |
| 33 | 2 | subm0cl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 35 | 5 32 34 | pm2.61ne | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝑆 ) |