This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gsumwcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | gsumws1 | ⊢ ( 𝑆 ∈ 𝐵 → ( 𝐺 Σg 〈“ 𝑆 ”〉 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumwcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | s1val | ⊢ ( 𝑆 ∈ 𝐵 → 〈“ 𝑆 ”〉 = { 〈 0 , 𝑆 〉 } ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑆 ∈ 𝐵 → ( 𝐺 Σg 〈“ 𝑆 ”〉 ) = ( 𝐺 Σg { 〈 0 , 𝑆 〉 } ) ) |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | elfvdm | ⊢ ( 𝑆 ∈ ( Base ‘ 𝐺 ) → 𝐺 ∈ dom Base ) | |
| 6 | 5 1 | eleq2s | ⊢ ( 𝑆 ∈ 𝐵 → 𝐺 ∈ dom Base ) |
| 7 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 8 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 9 | 7 8 | eleqtri | ⊢ 0 ∈ ( ℤ≥ ‘ 0 ) |
| 10 | 9 | a1i | ⊢ ( 𝑆 ∈ 𝐵 → 0 ∈ ( ℤ≥ ‘ 0 ) ) |
| 11 | 0z | ⊢ 0 ∈ ℤ | |
| 12 | f1osng | ⊢ ( ( 0 ∈ ℤ ∧ 𝑆 ∈ 𝐵 ) → { 〈 0 , 𝑆 〉 } : { 0 } –1-1-onto→ { 𝑆 } ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝑆 ∈ 𝐵 → { 〈 0 , 𝑆 〉 } : { 0 } –1-1-onto→ { 𝑆 } ) |
| 14 | f1of | ⊢ ( { 〈 0 , 𝑆 〉 } : { 0 } –1-1-onto→ { 𝑆 } → { 〈 0 , 𝑆 〉 } : { 0 } ⟶ { 𝑆 } ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑆 ∈ 𝐵 → { 〈 0 , 𝑆 〉 } : { 0 } ⟶ { 𝑆 } ) |
| 16 | snssi | ⊢ ( 𝑆 ∈ 𝐵 → { 𝑆 } ⊆ 𝐵 ) | |
| 17 | 15 16 | fssd | ⊢ ( 𝑆 ∈ 𝐵 → { 〈 0 , 𝑆 〉 } : { 0 } ⟶ 𝐵 ) |
| 18 | fz0sn | ⊢ ( 0 ... 0 ) = { 0 } | |
| 19 | 18 | feq2i | ⊢ ( { 〈 0 , 𝑆 〉 } : ( 0 ... 0 ) ⟶ 𝐵 ↔ { 〈 0 , 𝑆 〉 } : { 0 } ⟶ 𝐵 ) |
| 20 | 17 19 | sylibr | ⊢ ( 𝑆 ∈ 𝐵 → { 〈 0 , 𝑆 〉 } : ( 0 ... 0 ) ⟶ 𝐵 ) |
| 21 | 1 4 6 10 20 | gsumval2 | ⊢ ( 𝑆 ∈ 𝐵 → ( 𝐺 Σg { 〈 0 , 𝑆 〉 } ) = ( seq 0 ( ( +g ‘ 𝐺 ) , { 〈 0 , 𝑆 〉 } ) ‘ 0 ) ) |
| 22 | fvsng | ⊢ ( ( 0 ∈ ℤ ∧ 𝑆 ∈ 𝐵 ) → ( { 〈 0 , 𝑆 〉 } ‘ 0 ) = 𝑆 ) | |
| 23 | 11 22 | mpan | ⊢ ( 𝑆 ∈ 𝐵 → ( { 〈 0 , 𝑆 〉 } ‘ 0 ) = 𝑆 ) |
| 24 | 11 23 | seq1i | ⊢ ( 𝑆 ∈ 𝐵 → ( seq 0 ( ( +g ‘ 𝐺 ) , { 〈 0 , 𝑆 〉 } ) ‘ 0 ) = 𝑆 ) |
| 25 | 3 21 24 | 3eqtrd | ⊢ ( 𝑆 ∈ 𝐵 → ( 𝐺 Σg 〈“ 𝑆 ”〉 ) = 𝑆 ) |