This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of Monk1 p. 36. (Contributed by NM, 4-Jul-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dm0 | ⊢ dom ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | ⊢ ¬ 〈 𝑥 , 𝑦 〉 ∈ ∅ | |
| 2 | 1 | nex | ⊢ ¬ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ∅ |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 | ⊢ ( 𝑥 ∈ dom ∅ ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ∅ ) |
| 5 | 2 4 | mtbir | ⊢ ¬ 𝑥 ∈ dom ∅ |
| 6 | 5 | nel0 | ⊢ dom ∅ = ∅ |