This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1omvdco3 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ⊻ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ) → 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbi | ⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ( ¬ 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ) | |
| 2 | disjsn | ⊢ ( ( dom ( 𝐹 ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) | |
| 3 | disj2 | ⊢ ( ( dom ( 𝐹 ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) | |
| 4 | 2 3 | bitr3i | ⊢ ( ¬ 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 5 | disjsn | ⊢ ( ( dom ( 𝐺 ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) | |
| 6 | disj2 | ⊢ ( ( dom ( 𝐺 ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) | |
| 7 | 5 6 | bitr3i | ⊢ ( ¬ 𝑋 ∈ dom ( 𝐺 ∖ I ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 8 | 4 7 | bibi12i | ⊢ ( ( ¬ 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) |
| 9 | 1 8 | bitri | ⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) |
| 10 | 9 | notbii | ⊢ ( ¬ ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ¬ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) |
| 11 | df-xor | ⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ⊻ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ¬ ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ) | |
| 12 | df-xor | ⊢ ( ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ⊻ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ↔ ¬ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) | |
| 13 | 10 11 12 | 3bitr4i | ⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ⊻ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ⊻ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) |
| 14 | f1omvdco2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ⊻ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) | |
| 15 | disj2 | ⊢ ( ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) | |
| 16 | disjsn | ⊢ ( ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) | |
| 17 | 15 16 | bitr3i | ⊢ ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ ¬ 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) |
| 18 | 17 | con2bii | ⊢ ( 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ↔ ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 19 | 14 18 | sylibr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ⊻ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) → 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) |
| 20 | 13 19 | syl3an3b | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ⊻ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ) → 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) |