This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homomorphic property of composites. Second formula in Lang p. 4. (Contributed by Stefan O'Rear, 16-Aug-2015) (Revised by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumccat.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumccat.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | gsumccat | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumccat.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumccat.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | oveq1 | ⊢ ( 𝑊 = ∅ → ( 𝑊 ++ 𝑋 ) = ( ∅ ++ 𝑋 ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑊 = ∅ → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( 𝐺 Σg ( ∅ ++ 𝑋 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑊 = ∅ → ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg ∅ ) ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | 6 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 8 | 5 7 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝐺 Σg 𝑊 ) = ( 0g ‘ 𝐺 ) ) |
| 9 | 8 | oveq1d | ⊢ ( 𝑊 = ∅ → ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝐺 Σg 𝑋 ) ) ) |
| 10 | 4 9 | eqeq12d | ⊢ ( 𝑊 = ∅ → ( ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) ↔ ( 𝐺 Σg ( ∅ ++ 𝑋 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝐺 Σg 𝑋 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑋 = ∅ → ( 𝑊 ++ 𝑋 ) = ( 𝑊 ++ ∅ ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑋 = ∅ → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( 𝐺 Σg ( 𝑊 ++ ∅ ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑋 = ∅ → ( 𝐺 Σg 𝑋 ) = ( 𝐺 Σg ∅ ) ) | |
| 14 | 13 7 | eqtrdi | ⊢ ( 𝑋 = ∅ → ( 𝐺 Σg 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 15 | 14 | oveq2d | ⊢ ( 𝑋 = ∅ → ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 0g ‘ 𝐺 ) ) ) |
| 16 | 12 15 | eqeq12d | ⊢ ( 𝑋 = ∅ → ( ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) ↔ ( 𝐺 Σg ( 𝑊 ++ ∅ ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 0g ‘ 𝐺 ) ) ) ) |
| 17 | mndsgrp | ⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp ) | |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → 𝐺 ∈ Smgrp ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑋 ≠ ∅ ) → 𝐺 ∈ Smgrp ) |
| 20 | 3simpc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ) | |
| 21 | 20 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑋 ≠ ∅ ) → ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ) |
| 22 | simpr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 ≠ ∅ ) | |
| 23 | 22 | anim1i | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑋 ≠ ∅ ) → ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) |
| 24 | 1 2 | gsumsgrpccat | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) ) |
| 25 | 19 21 23 24 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑋 ≠ ∅ ) → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) ) |
| 26 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 ∈ Word 𝐵 ) | |
| 27 | ccatrid | ⊢ ( 𝑊 ∈ Word 𝐵 → ( 𝑊 ++ ∅ ) = 𝑊 ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝑊 ++ ∅ ) = 𝑊 ) |
| 29 | 28 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐺 Σg ( 𝑊 ++ ∅ ) ) = ( 𝐺 Σg 𝑊 ) ) |
| 30 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝐺 ∈ Mnd ) | |
| 31 | 1 | gsumwcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ) |
| 32 | 31 | 3adant3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ) |
| 34 | 1 2 6 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ) → ( ( 𝐺 Σg 𝑊 ) + ( 0g ‘ 𝐺 ) ) = ( 𝐺 Σg 𝑊 ) ) |
| 35 | 30 33 34 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( ( 𝐺 Σg 𝑊 ) + ( 0g ‘ 𝐺 ) ) = ( 𝐺 Σg 𝑊 ) ) |
| 36 | 29 35 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐺 Σg ( 𝑊 ++ ∅ ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 0g ‘ 𝐺 ) ) ) |
| 37 | 16 25 36 | pm2.61ne | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) ) |
| 38 | ccatlid | ⊢ ( 𝑋 ∈ Word 𝐵 → ( ∅ ++ 𝑋 ) = 𝑋 ) | |
| 39 | 38 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( ∅ ++ 𝑋 ) = 𝑋 ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( 𝐺 Σg ( ∅ ++ 𝑋 ) ) = ( 𝐺 Σg 𝑋 ) ) |
| 41 | simp1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → 𝐺 ∈ Mnd ) | |
| 42 | 1 | gsumwcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ Word 𝐵 ) → ( 𝐺 Σg 𝑋 ) ∈ 𝐵 ) |
| 43 | 1 2 6 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐺 Σg 𝑋 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝐺 Σg 𝑋 ) ) = ( 𝐺 Σg 𝑋 ) ) |
| 44 | 41 42 43 | 3imp3i2an | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝐺 Σg 𝑋 ) ) = ( 𝐺 Σg 𝑋 ) ) |
| 45 | 40 44 | eqtr4d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( 𝐺 Σg ( ∅ ++ 𝑋 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝐺 Σg 𝑋 ) ) ) |
| 46 | 10 37 45 | pm2.61ne | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) ) |