This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzostep1 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) | |
| 2 | uzid | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) ) | |
| 3 | peano2uz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) | |
| 4 | fzoss1 | ⊢ ( ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) → ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ⊆ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ) | |
| 5 | 1 2 3 4 | 4syl | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ⊆ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ) |
| 6 | 1z | ⊢ 1 ∈ ℤ | |
| 7 | fzoaddel | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 1 ∈ ℤ ) → ( 𝐴 + 1 ) ∈ ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐴 + 1 ) ∈ ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ) |
| 9 | 5 8 | sseldd | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ) |
| 10 | elfzoel2 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) | |
| 11 | elfzolt3 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 < 𝐶 ) | |
| 12 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 13 | zre | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℝ ) | |
| 14 | ltle | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 → 𝐵 ≤ 𝐶 ) ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 < 𝐶 → 𝐵 ≤ 𝐶 ) ) |
| 16 | 1 10 15 | syl2anc | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐵 < 𝐶 → 𝐵 ≤ 𝐶 ) ) |
| 17 | 11 16 | mpd | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ≤ 𝐶 ) |
| 18 | eluz2 | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶 ) ) | |
| 19 | 1 10 17 18 | syl3anbrc | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 20 | fzosplitsni | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ↔ ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ↔ ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) ) |
| 22 | 9 21 | mpbid | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) |